Citation: Ye TIAN, Run-Ze MA, Ying JIANG. Structure and Growth of Two-dimensional Ices at the Surfaces Probed by Scanning Probe Microscopy[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 381-387. doi: 10.14102/j.cnki.0254-5861.2011-2766 shu

Structure and Growth of Two-dimensional Ices at the Surfaces Probed by Scanning Probe Microscopy

  • Corresponding author: Ying JIANG, yjiang@pku.edu.cn
  • Received Date: 16 February 2020
    Accepted Date: 20 February 2020

Figures(4)

  • Scanning probe microscopy (SPM) stands out as one of the most powerful tools for characterizing the solid surface and the adsorbed molecules with Ångström resolution in real space. In particular, this unique technique provides an unprecedented opportunity for directly probing the low-dimensional ices at surfaces. In this perspective, we first review the recent advances of scanning tunneling microscopy (STM) imaging of various two-dimensional (2D) ice structures on metal[1-7], insulator[8-12], graphite[13-15] surfaces and under strong confinement[10, 16-19]. We then introduce that noncontact atomic-force microscopy (AFM) with a CO-terminated tip enables atomic imaging of a genuine 2D ice grown on a hydrophobic Au(111) surface with minimal perturbation[20], paying particular attention to the growth processes at the edges of 2D ice. In the end, we present an outlook on the future applications of 2D ice as well as the relation between the 2D and 3D ice growth.
  • 加载中
    1. [1]

      Hodgson, A.; Haq, S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 2009, 64(9), 381–451.  doi: 10.1016/j.surfrep.2009.07.001

    2. [2]

      Nie, S.; Feibelman, P. J.; Bartelt, N. C.; Thurmer, K. Pentagons and heptagons in the first water layer on Pt(111). Phys. Rev. Lett. 2010, 105(2), 026102.  doi: 10.1103/PhysRevLett.105.026102

    3. [3]

      Thurmer, K.; Nie, S. Formation of hexagonal and cubic ice during low-temperature growth. P. Natl. Acad. Sci. USA. 2013, 110(29), 11757–11762.  doi: 10.1073/pnas.1303001110

    4. [4]

      Maier, S.; Lechner, B. A. J.; Somorjai, G. A.; Salmeron, M. Growth and structure of the first layers of ice on Ru(0001) and Pt(111). J. Am. Chem. Soc. 2016, 138(9), 3145–3151.  doi: 10.1021/jacs.5b13133

    5. [5]

      Lin, C.; Avidor, N.; Corem, G.; Godsi, O.; Alexandrowicz, G.; Darling, G. R.; Hodgson, A. Two-dimensional wetting of a stepped copper surface. Phys. Rev. Lett. 2018, 120(7), 076101.  doi: 10.1103/PhysRevLett.120.076101

    6. [6]

      Mehlhom, M.; Morgenstern, K. Faceting during the transformation of amorphous to crystalline ice. Phys. Rev. Lett. 2007, 99(24), 246101.  doi: 10.1103/PhysRevLett.99.246101

    7. [7]

      Carrasco, J.; Hodgson, A.; Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012, 11(8), 667–674.  doi: 10.1038/nmat3354

    8. [8]

      Chen, J.; Guo, J.; Meng, X. Z.; Peng, J. B.; Sheng, J. M.; Xu, L. M.; Jiang, Y.; Li, X. Z.; Wang, E. G. An unconventional bilayer ice structure on a NaCl(001) film. Nat. Commun. 2014, 54056.

    9. [9]

      Hu, J.; Xiao, X. D.; Ogletree, D. F.; Salmeron, M. Imaging the condensation and evaporation of molecularly thin-films of water with nanometer resolution. Science 1995, 268(5208), 267–269.  doi: 10.1126/science.268.5208.267

    10. [10]

      Xu, K.; Cao, P. G.; Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 2010, 329(5996), 1188–1191.  doi: 10.1126/science.1192907

    11. [11]

      Odelius, M.; Bernasconi, M.; Parrinello, M. Two dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 1997, 78(14), 2855–2858.  doi: 10.1103/PhysRevLett.78.2855

    12. [12]

      Meier, M.; Hulva, J.; Jakub, Z.; Pavelec, J.; Setvin, M.; Bliem, R.; Schmid, M.; Diebold, U.; Franchini, C.; Parkinson, G. S. Water agglomerates on Fe3O4(001). P. Natl. Acad. Sci. USA. 2018, 115(25), E5642–E5650.

    13. [13]

      Lupi, L.; Kastelowitz, N.; Molinero, V. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water. J. Chem. Phys. 2014, 141(18), 18C508.  doi: 10.1063/1.4895543

    14. [14]

      Kimmel, G. A.; Matthiesen, J.; Baer, M.; Mundy, C. J.; Petrik, N. G.; Smith, R. S.; Dohnalek, Z.; Kay, B. D. No confinement needed: Observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 2009, 131(35), 12838–12844.  doi: 10.1021/ja904708f

    15. [15]

      Zhang, X.; Xu, J. Y.; Tu, Y. B.; Sun, K.; Tao, M. L.; Xiong, Z. H.; Wu, K. H.; Wang, J. Z.; Xue, Q. K.; Meng, S. Hexagonal monolayer ice without shared edges. Phys. Rev. Lett. 2018, 121(25), 256001.  doi: 10.1103/PhysRevLett.121.256001

    16. [16]

      Koga, K.; Zeng, X. C.; Tanaka, H. Freezing of confined water: A bilayer ice phase in hydrophobic nanopores. Phys. Rev. Lett. 1997, 79(26), 5262–5265.  doi: 10.1103/PhysRevLett.79.5262

    17. [17]

      Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V. Square ice in graphene nanocapillaries. Nature 2015, 519(7544), 443–445.  doi: 10.1038/nature14295

    18. [18]

      Chen, J.; Schusteritsch, G.; Pickard, C. J.; Salzmann, C. G.; Michaelides, A. Two dimensional ice from first principles: Structures and phase transitions. Phys. Rev. Lett. 2016, 116(2), 025501.  doi: 10.1103/PhysRevLett.116.025501

    19. [19]

      Bampoulis, P.; Teernstra, V. J.; Lohse, D.; Zandvliet, H. J. W.; Poelsema, B. Hydrophobic ice confined between graphene and MoS2. J. Phys. Chem. C. 2016, 120(47), 27079–27084.  doi: 10.1021/acs.jpcc.6b09812

    20. [20]

      Peng, J. B.; Guo, J.; Hapala, P.; Cao, D. Y.; Ma, R. Z.; Cheng, B. W.; Xu, L. M.; Ondracek, M.; Jelinek, P.; Wang, E. G.; Jiang, Y. Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat. Commun. 2018, 9122.

    21. [21]

      Shen, Y. R.; Ostroverkhov, V. Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 2006, 106(4), 1140–1154.  doi: 10.1021/cr040377d

    22. [22]

      Dosch, H.; Lied, A.; Bilgram, J. H. Disruption of the hydrogen-bonding network at the surface of I-h ice near surface premelting. Surf. Sci. 1996, 366(1), 43–50.  doi: 10.1016/0039-6028(96)00805-9

    23. [23]

      Nakamura, M.; Ito, M. Monomer structures of water adsorbed on p(2x2)-Ni(111)-O surface at 25 and 140 K studied by surface X-ray diffraction. Phys. Rev. Lett. 2005, 94(3), 035501.  doi: 10.1103/PhysRevLett.94.035501

    24. [24]

      Matubayasi, N.; Wakai, C.; Nakahara, M. Structural study of supercritical water. 1. Nuclear magnetic resonance spectroscopy. J. Chem. Phys. 1997, 107(21), 9133–9140.  doi: 10.1063/1.475205

    25. [25]

      Mallamace, F.; Broccio, M.; Corsaro, C.; Faraone, A.; Wanderlingh, U.; Liu, L.; Mou, C. Y.; Chen, S. H. The fragile-to-strong dynamic crossover transition in confined water: Nuclear magnetic resonance results. J. Chem. Phys. 2006, 124(16), 161102.  doi: 10.1063/1.2193159

    26. [26]

      Steitz, R.; Gutberlet, T.; Hauss, T.; Klosgen, B.; Krastev, R.; Schemmel, S.; Simonsen, A. C.; Findenegg, G. H. Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate. Langmuir 2003, 19(6), 2409–2418.  doi: 10.1021/la026731p

    27. [27]

      Schwendel, D.; Hayashi, T.; Dahint, R.; Pertsin, A.; Grunze, M.; Steitz, R.; Schreiber, F. Interaction of water with self-assembled monolayers: Neutron reflectivity measurements of the water density in the interface region. Langmuir 2003, 19(6), 2284–2293.  doi: 10.1021/la026716k

    28. [28]

      Kumagai, T.; Okuyama, H.; Hatta, S.; Aruga, T.; Hamada, I. Water clusters on Cu(110): Chain versus cyclic structures. J. Chem. Phys. 2011, 134(2), 024703.  doi: 10.1063/1.3525645

    29. [29]

      Carrasco, J.; Michaelides, A.; Forster, M.; Haq, S.; Raval, R.; Hodgson, A. A one-dimensional ice structure built from pentagons. Nat. Mater. 2009, 8(5), 427–431.  doi: 10.1038/nmat2403

    30. [30]

      Forster, M.; Raval, R.; Hodgson, A.; Carrasco, J.; Michaelides, A. c(2 x 2) water-hydroxyl layer on Cu(110): A wetting layer stabilized by Bjerrum defects. Phys. Rev. Lett. 2011, 106(4), 046103.  doi: 10.1103/PhysRevLett.106.046103

    31. [31]

      Tatarkhanov, M.; Ogletree, D. F.; Rose, F.; Mitsui, T.; Fomin, E.; Maier, S.; Rose, M.; Cerda, J. I.; Salmeron, M. Metal- and hydrogen-bonding competition during water adsorption on Pd(111) and Ru(0001). J. Am. Chem. Soc. 2009, 131(51), 18425–18434.  doi: 10.1021/ja907468m

    32. [32]

      Maier, S.; Stass, I.; Mitsui, T.; Feibelman, P. J.; Thurmer, K.; Salmeron, M. Adsorbed water-molecule hexagons with unexpected rotations in islands on Ru(0001) and Pd(111). Phys. Rev. B 2012, 85(15), 155434.  doi: 10.1103/PhysRevB.85.155434

    33. [33]

      Standop, S.; Redinger, A.; Morgenstern, M.; Michely, T.; Busse, C. Molecular structure of the H2O wetting layer on Pt(111). Phys. Rev. B 2010, 82(16), 161412(R).  doi: 10.1103/PhysRevB.82.161412

    34. [34]

      Doering, D. L.; Madey, T. E. The adsorption of water on clean and qxygen-dosed Ru(001). Surf. Sci. 1982, 123(2–3), 305-337.  doi: 10.1016/0039-6028(82)90331-4

    35. [35]

      Wang, F. C.; Wu, H. A.; Geim, A. K. The observation of square ice in graphene questioned Reply. Nature 2015, 528(7583), E1-E2.  doi: 10.1038/nature16145

    36. [36]

      Ma, R. Z.; Cao, D. Y.; Zhu, C. Q.; Tian, Y.; Peng, J. B.; Guo, J.; Chen, J.; Li, X. Z.; Francisco, J. S.; Zeng, X. C.; Xu, L. M.; Wang, E. G.; Jiang, Y. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 2020, 577(7788), 60–63.  doi: 10.1038/s41586-019-1853-4

    37. [37]

      Peng, J. B.; Cao, D. Y.; He, Z. L.; Guo, J.; Hapala, P.; Ma, R. Z.; Cheng, B. W.; Chen, J.; Xie, W. J.; Li, X. Z.; Jelinek, P.; Xu, L. M.; Gao, Y. Q.; Wang, E. G.; Jiang, Y. The effect of hydration number on the interfacial transport of sodium ions. Nature 2018, 557(7707), 701–705.  doi: 10.1038/s41586-018-0122-2

  • 加载中
    1. [1]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    4. [4]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    5. [5]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    6. [6]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    7. [7]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    8. [8]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    9. [9]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    10. [10]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    11. [11]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    12. [12]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    13. [13]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    14. [14]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    15. [15]

      Bo YuPengchen DuJianwen GuoHanshen XinJianhua Zhang . Nonalternant isomer of pentacene fusing two azulene units. Chinese Chemical Letters, 2024, 35(5): 109321-. doi: 10.1016/j.cclet.2023.109321

    16. [16]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    17. [17]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    18. [18]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

Metrics
  • PDF Downloads(2)
  • Abstract views(304)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return