Citation: Qing-He ZHAO, Shou-Xiang DING, Ao-Ye SONG, Run-Zhi QIN, Feng PAN. Tuning Structure of Manganese Oxides to Achieve High-performance Aqueous Zn Batteries[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 388-394. doi: 10.14102/j.cnki.0254-5861.2011-2765 shu

Tuning Structure of Manganese Oxides to Achieve High-performance Aqueous Zn Batteries

  • Corresponding author: Feng PAN, panfeng@pkusz.edu.cn
  • The first three authors contriute equally to this work
  • Received Date: 13 February 2020
    Accepted Date: 19 February 2020

    Fund Project: Soft Science Research Project of Guangdong Province 2017B030301013Shenzhen Science and Technology Research Grant ZDSYS20170728102618

Figures(2)

  • As a key material for the development of mild aqueous rechargeable Zn/MnO2 cells, MnO2 has attracted much attention. This article presents some issues of MnO2, provides some strategies improving battery performance of MnO2 electrode, as well as makes a perspective on future research and development of MnO2 materials. This article offers a profound insight on structure/property relationship of MnO2, and benefits a lot to those involved in energy storage and conversion applications.
  • 加载中
    1. [1]

      Safyan, A. K. ; Ali, S. ; Khalid, S. ; Muhammad, U. ; Ibrahim, K. Advanced cathode materials and efficient electrolytes for rechargeable batteries: practical challenges and future perspectives. J. Mater. Chem. A 2019, 7, 10159–10173.  doi: 10.1039/C9TA00581A

    2. [2]

      Vivek, V. ; Kumar, S. ; William, M. ; Rohit, S. ; Madhavi, S. Progress in rechargeable aqueous zinc- and aluminum-ion battery electrodes: challenges and outlook. Adv. Sustainable Syst. 2019, 3, 1800111.  doi: 10.1002/adsu.201800111

    3. [3]

      Cheng, J. ; Li, X. B. ; Du, H. ; Kang, F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. -Int. Edit. 2012, 51, 933–935.  doi: 10.1002/anie.201106307

    4. [4]

      Fang, G. ; Zhou, J. ; Pan, A. ; Liang, S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.  doi: 10.1021/acsenergylett.8b01426

    5. [5]

      Dinesh, S. ; Pan, A. ; Liang, S. ; Cao, G. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 2019, 7, 18209–18236.  doi: 10.1039/C9TA05053A

    6. [6]

      Jun, M. ; Guo, J. ; Xia, C. ; Wang, W. ; Husam, N. A. Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R-Rep. 2019, 135, 58–84.  doi: 10.1016/j.mser.2018.10.002

    7. [7]

      Zhang, R. ; Yu, X. ; Nam, K. W. ; Chen, L. ; Timothy, S. A. ; Wei, S. ; Angela, M. K. ; Steven, N. E. ; Yang, X. Q. ; Matsui, M. α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 2012, 23, 110–113.  doi: 10.1016/j.elecom.2012.07.021

    8. [8]

      Lee, B. ; Chong, S. Y. ; Lee, H. R. ; Chung, K. Y. ; Cho, B. W. ; Si, H. O. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 2014, 4, 6066.  doi: 10.1038/srep06066

    9. [9]

      Boeun, L. L. ; Haesik, K. ; Kyung, Y. C. ; Cho, B. W. ; Oh, S. H. Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 2015, 51, 9265–9268.  doi: 10.1039/C5CC02585K

    10. [10]

      Han, S. D. ; Li, D. ; Petkov, V. ; Yoo, H. D. ; Phillips, P. J. ; Wang, H. ; Kim, J. J. ; More, K. L. ; Key, B. ; Klie, R. F. ; Cabana, J. ; Stamenkovic, V. R. ; Fister, T. T. ; Markovic, N. M. ; Burrell, A. K. ; Tepavcevic, S. ; Vaughey, J. T. Mechanism of Zn insertion into nanostructured delta-MnO2: a nonaqueous rechargeable Zn metal battery. Chem. Mater. 2017, 29, 4874–4884.  doi: 10.1021/acs.chemmater.7b00852

    11. [11]

      Muhammad, H. A. ; Dimas, Y. P. ; Vinod, M. ; Sungjin, K. ; Jeonggeun, J. ; Seokhun, K. ; Yang, S. ; Kwangho, K. ; Jaekook, K. Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim. Acta 2018, 276, 1–11.  doi: 10.1016/j.electacta.2018.04.139

    12. [12]

      Islam, S. ; Alfaruqi, M. H. ; Mathew, V. ; Song, J. ; Kim, S. ; Kim, S. ; Jo, J. ; Baboo, J. P. ; Pham, D. T. ; Putro, D. Y. ; Sun, Y. K. ; Kim, J. Facile synthesis and the exploration of the zinc storage mechanism of beta-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 2017, 5, 23299–23309.  doi: 10.1039/C7TA07170A

    13. [13]

      Muhammad, H. A. ; Jihyeon, G. ; Kim, S. ; Song, J. ; Joseph, P. B. ; Sun H. C. ; Jaekook, K. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 2015, 27, 3609−3620.  doi: 10.1021/cm504717p

    14. [14]

      Liu, M. ; Zhao, Q. ; Liu, H. ; Yang, J. ; Chen, X. ; Yang, L. ; Cui, Y. ; Huang, W. ; Zhao, W. ; Song, A. ; Wang, Y. ; Ding, S. ; Song, Y. ; Qian, G. ; Chen, H. ; Pan, F. Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 2019, 64, 103942.  doi: 10.1016/j.nanoen.2019.103942

    15. [15]

      Alfaruqi, M. H. ; Kim, S. ; Song, J. ; Pham, D. ; Jo, J. ; Xiu, Z. M. ; Kim, J. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 2015, 60, 121–125.  doi: 10.1016/j.elecom.2015.08.019

    16. [16]

      Zhang, N. ; Cheng, F. ; Liu, Y. ; Zhao, Q. ; Lei, K. ; Chen, C. ; Liu, X. ; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-eon battery. J. Am. Chem. Soc. 2016, 138, 12894.  doi: 10.1021/jacs.6b05958

    17. [17]

      Pan, H. ; Shao, Y. ; Yan, P. ; Cheng, Y. ; Han, K. S. ; Nie, Z. ; Wang, C. ; Yang, J. ; Li, X. ; Bhattacharya, P. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.  doi: 10.1038/nenergy.2016.39

    18. [18]

      Mathew, V. ; Xiu, Z. ; Alfaruqi, M. H. ; Gim, J. ; Kim, S. ; Song, J. ; Thi, T. V. ; Tung, D. P. ; Baboo, J. P. ; Kim, J. A structurally stable α-MnO2 nanorod cathode for enhanced reversible divalent zinc storage. J. Power Sources 2015, 288, 320–327.  doi: 10.1016/j.jpowsour.2015.04.140

    19. [19]

      Huang, J. ; Wang, Z. ; Hou, M. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906.  doi: 10.1038/s41467-018-04949-4

    20. [20]

      Sun, W. ; Wang, F. ; Hou, S. ; Yang, C. ; Fan, X. ; Ma, Z. ; Gao, T. ; Han, F. ; Hu, R. ; Zhu, M. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775.  doi: 10.1021/jacs.7b04471

    21. [21]

      Yan, J. ; Zou, L. ; Liu, L. ; Mark, H. E. ; Rajankumar, L. P. ; Nie, Z. ; Han, K. S. ; Shao, Y. ; Wang, C. ; Zhu, J. ; Pan, H. ; Liu, J. Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries. Adv. Mater. 2019, 31, 1900567.  doi: 10.1002/adma.201900567

    22. [22]

      Zhao, Q. ; Chen, X. ; Wang, Z. ; Yang, L. ; Qin, R. ; Yang, J. ; Song, Y. ; Ding, S. ; Weng, M. ; Huang, W. ; Liu, J. ; Zhao, W. ; Chen, H. ; Pan, F. Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small 2019, 1904545.

    23. [23]

      Lee, B. S. ; Seo, H. R. ; Lee, H. R. ;Yoon, C. S. ; Kim, J. H. ; Chung, K. Y. ; Cho, B. W. ; Oh, S. H. Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. Chem. Mater. 2019, 31, 2036–2047.  doi: 10.1021/acs.chemmater.8b05093

    24. [24]

      Li, Y. ; Wang, S. ; James, R. S. ; Wu, J. ; Liu, B. ; Yang, W. ; Yang, J. ; Zhang, W. ; Liu, J. ; Yang, J. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem. Mater. 2019, 31, 2036–2047.  doi: 10.1021/acs.chemmater.8b05093

    25. [25]

      Wang, D. ; Wang, L. ; Liang, G. ; Li, H. ; Liu, Z. ; Tang, Z. ; Liang, J. ; Zhi, C. A Superior δ-MnO2 cathode and a self healing Zn-δ-MnO2 battery. ACS Nano 2019, 13, 10643–10652.  doi: 10.1021/acsnano.9b04916

    26. [26]

      Liu, G. ; Huang, H. ; Bi, R. ; Xiao, X. ; Ma, T. ; Zhang, L. K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion battery. J. Mater. Chem. A 2019, 7, 20806–20812.  doi: 10.1039/C9TA08049J

    27. [27]

      Xiong, T. ; Yu, Z. G. ; Wu, H. ; Du, Y. ; Xie, Q. ; Chen, J. ; Zhang, Y. W. ; Pennycook, S. J. ; Lee, W. S. V. ; Xue, J. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 2019, 9, 1803815.  doi: 10.1002/aenm.201803815

    28. [28]

      Lian, S. ; Sun, C. ; Xu, W. ; Huo, W. ; Luo, Y. ; Zhao, K. ; Yao, G. ; Xu, W. ; Zhang, Y. ; Li, Z. ; Yu, K. ; Zhao, H. ; Cheng, H. ; Zhang, J. ; Mai, L. Built-in oriented electric field facilitating durable Zn-MnO2 battery. Nano Energy 2019, 62, 79–84.  doi: 10.1016/j.nanoen.2019.04.038

    29. [29]

      Chao, D. ; Zhou, W. ; Ye, C. ; Zhang, Q. ; Chen, Y. ; Gu, L. ; Kenneth, D. ; Qiao, S. An electrolytic Zn-MnO2 battery demonstrated for high-voltage and scalable energy storage. Angew. Chem. -Int. Edit. 2019, 58, 7823–7828.  doi: 10.1002/anie.201904174

    30. [30]

      Liang, G. ; Mo, F. M. ; Li, H. F. ; Tang, Z. ; Liu, Z. ; Wang, D. ; Yang, Q. ; Ma, L. ; Zhi, C. A universal principle to design reversible aqueous batteries based on deposition-dissolution mechanism. Adv. Energy Mater. 2019, 9, 1901838.  doi: 10.1002/aenm.201901838

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    3. [3]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    4. [4]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    5. [5]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    8. [8]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    9. [9]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    10. [10]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    11. [11]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    12. [12]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    13. [13]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    14. [14]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    15. [15]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    16. [16]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    17. [17]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    18. [18]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    19. [19]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    20. [20]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

Metrics
  • PDF Downloads(2)
  • Abstract views(224)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return