Citation: Ming-Jian ZHANG, Yu-Sheng CHEN, Feng PAN, Yang REN. Understanding Structural Evolution in the Synthesis of Advanced Energy Materials[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 26-30. doi: 10.14102/j.cnki.0254-5861.2011-2719 shu

Understanding Structural Evolution in the Synthesis of Advanced Energy Materials

  • Corresponding author: Yu-Sheng CHEN, yschen@cars.uchicago.edu Feng PAN, panfeng@pkusz.edu.cn Yang REN, yren@anl.gov
  • Received Date: 25 December 2019
    Accepted Date: 26 December 2019

    Fund Project: the National Key R & D Program of China 2016YFB0700600Soft Science Research Project of Guangdong Province 2017B030301013Shenzhen Science and Technology Research Grant ZDSYS201707281026184NSF's ChemMatCARS Sector 15 is supported by the Divisions of Chemistry (CHE) and Materials Research (DMR), National Science Foundation NSF/CHE-1834750

Figures(3)

  • Developing a variety of in situ characterization techniques to unravel the structural/chemical evolution during the synthesis of various advanced energy materials for studying the relationship among those experimental conditions and the structure is the key to implement the controllable synthesis of battery materials. This perspective summarizes the recent studies into structural evolution during in situ synthesis of various advanced energy materials by synchrotron X-ray diffraction technique and forecasts the more extensive applications in the future.
  • 加载中
    1. [1]

      Zhao, J.; Zhang, W.; Huq, A.; Misture, S. T.; Zhang, B.; Guo, S.; Wu, L.; Zhu, Y.; Chen, Z.; Amine, K.; Pan, F.; Bai, J.; Wang, F. In situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes. Adv. Energy Mater. 2017, 7, 1601266.  doi: 10.1002/aenm.201601266

    2. [2]

      Wang, D.; Kou, R.; Ren, Y.; Sun, C. J.; Zhao, H.; Zhang, M. J.; Li, Y.; Huq, A.; Ko, J. Y. P.; Pan, F.; Sun, Y. K.; Yang, Y.; Amine, K.; Bai, J.; Chen, Z.; Wang, F. Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv. Mater. 2017, 29.

    3. [3]

      Wang, D.; Xin, C.; Zhang, M.; Bai, J.; Zheng, J.; Kou, R.; Peter Ko, J. Y.; Huq, A.; Zhong, G.; Sun, C. J.; Yang, Y.; Chen, Z.; Xiao, Y.; Amine, K.; Pan, F.; Wang, F. Intrinsic role of cationic substitution in tuning Li/Ni mixing in high-Ni layered oxides. Chem. Mater. 2019, 31, 2731–2740.  doi: 10.1021/acs.chemmater.8b04673

    4. [4]

      Duan, Y.; Yang, L.; Zhang, M. J.; Chen, Z.; Bai, J.; Amine, K.; Pan, F.; Wang, F. Insights into Li/Ni ordering and surface reconstruction during synthesis of Ni-richlayered oxides. J. Mater. Chem. A 2019, 7, 513–519.  doi: 10.1039/C8TA10553G

    5. [5]

      Zhang, M. J.; Teng, G.; Chen-Wiegart, Y. K.; Duan, Y.; Ko, J. Y. P.; Zheng, J.; Thieme, J.; Dooryhee, E.; Chen, Z.; Bai, J.; Amine, K.; Pan, F.; Wang, F. Cationic ordering coupled to reconstruction of basic building units during synthesis of high-Ni layered oxides. J. Am. Chem. Soc. 2018, 140, 12484–12492.  doi: 10.1021/jacs.8b06150

    6. [6]

      Zheng, J. X.; Ye, Y. K.; Liu, T. C.; Xiao, Y. G.; Wang, C. M.; Wang, F.; Pan, F. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Acc. Chem. Res. 2019, 52, 2201–2209.  doi: 10.1021/acs.accounts.9b00033

    7. [7]

      Zhang, M. J.; Hu, X.; Li, M.; Duan, Y.; Yang, L.; Yin, C.; Ge, M.; Xiao, X.; Lee, W. K.; Ko, J. Y. P.; Amine, K.; Chen, Z.; Zhu, Y.; Dooryhee, E.; Bai, J.; Pan, F.; Wang, F. Cooling induced surface reconstruction during synthesis of high-Ni layered oxides. Adv. Energy Mater. 2019, 1901915.

    8. [8]

      Kong, D. F.; Hu, J. T.; Chen, Z. F.; Song, K. P.; Li, C.; Weng, M. Y.; Li, M. F.; Wang, R.; Liu, T. C.; Liu, J. J.; Zhang, M. J.; Xiao, Y. G.; Pan, F. Ti-Gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery. Adv. Energy Mater. 2019, 9.

    9. [9]

      Wang, Z.; Yin, Y. P.; Ren, Y.; Wang, Z. Y.; Gao, M.; Ma, T. Y.; Zhuang, W. D.; Lu, S. G.; Fan, A. L.; Amine, K.; Chen, Z. H. High performance lithium-manganese-rich cathode material with reduced impurities. Nano Energy 2017, 31, 247–257.  doi: 10.1016/j.nanoen.2016.10.014

    10. [10]

      Chen, Z. H.; Ren, Y.; Qin, Y.; Wu, H. M.; Ma, S. Q.; Ren, J. G.; He, X. M.; Sun, Y. K.; Amine, K. Solid state synthesis of LiFePO4 studied by in situ high energy X-ray diffraction. J. Mater. Chem. 2011, 21, 5604–5609.  doi: 10.1039/c0jm04049e

    11. [11]

      Chen, J. J.; Bai, J. M.; Chen, H. Y.; Graetz, J. In situ hydrothermal synthesis of LiFePO4 studied by synchrotron X-ray diffraction. J. Phys. Chem. Lett. 2011, 2, 1874–1878.  doi: 10.1021/jz2008209

    12. [12]

      Ma, T. Y.; Xu, G. L.; Zeng, X. Q.; Li, Y.; Ren, Y.; Sun, C. J.; Heald, S. M.; Jorne, J.; Amine, K.; Chen, Z. H. Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. J. Power Sources 2017, 341, 114–121.  doi: 10.1016/j.jpowsour.2016.11.022

    13. [13]

      Kan, Y. C.; Hu, Y.; Croy, J.; Ren, Y.; Sun, C. J.; Heald, S. M.; Bareno, J.; Bloom, I.; Chen, Z. H. Formation of Li2MnO3 investigated by in situ synchrotron probes. J. Power Sources 2014, 266, 341–346.  doi: 10.1016/j.jpowsour.2014.05.032

    14. [14]

      Wang, Z.; Ren, Y.; Ma, T. Y.; Zhuang, W. D.; Lu, S. G.; Xu, G. L.; Abouimrane, A.; Amine, K.; Chen, Z. H. Probing cation intermixing in Li2SnO3. RSC Adv. 2016, 6, 31559–31564.  doi: 10.1039/C6RA00977H

    15. [15]

      Li, Y.; Xu, R.; Ren, Y.; Lu, J.; Wu, H. M.; Wang, L. F.; Miller, D. J.; Sun, Y. K.; Amine, K.; Chen, Z. H. Synthesis of full concentration gradient, cathode studied by high energy X-ray diffraction. Nano Energy 2016, 19, 522–531.  doi: 10.1016/j.nanoen.2015.07.019

    16. [16]

      Park, Y. U.; Bai, J.; Wang, L.; Yoon, G.; Zhang, W.; Kim, H.; Lee, S.; Kim, S. W.; Looney, J. P.; Kang, K.; Wang, F. In situ tracking kinetic pathways of Li+/Na+ substitution during ion-exchange synthesis of LixNa1.5-xVOPO4F0.5. J. Am. Chem. Soc. 2017, 139, 12504–12516.  doi: 10.1021/jacs.7b05302

  • 加载中
    1. [1]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    2. [2]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    3. [3]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    4. [4]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    8. [8]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    9. [9]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    10. [10]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    11. [11]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    12. [12]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    13. [13]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    14. [14]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    15. [15]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    16. [16]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    17. [17]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    18. [18]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    19. [19]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    20. [20]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

Metrics
  • PDF Downloads(3)
  • Abstract views(363)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return