Citation: Zu-Wei YIN, Jun-Tao LI, Ling HUANG, Feng PAN, Shi-Gang SUN. High-capacity Li-rich Mn-based Cathodes for Lithium-ion Batteries[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 20-25. doi: 10.14102/j.cnki.0254-5861.2011-2718 shu

High-capacity Li-rich Mn-based Cathodes for Lithium-ion Batteries

  • Corresponding author: Feng PAN, panfeng@puesz.edu.cn Shi-Gang SUN, sgsun@xmu.edu.cn
  • Received Date: 25 December 2019
    Accepted Date: 26 December 2019

    Fund Project: NSFC 21621091National Key Research and Development of China 2016YFB0100202Natural Science Foundation of Fujian Province 2015J01063National Materials Genome Project 2016YFB0700600National Key R & D Program of China 2016YFB0700600the Guangdong Innovation Team Project 2013N080Shenzhen Science and Technology Research JCYJ20151015162256516Shenzhen Science and Technology Research JCYJ20150729111733470Shenzhen Science and Technology Research JCYJ20160226105838578

Figures(2)

  • Layered Li-rich Mn-based oxides are promising cathode materials for Li-ion batteries due to their high capacity and high operation voltage. However, their commercial applications are hindered by irreversible capacity loss in the first charge-discharge process, voltage decay during cycling, inefficient cyclability and rate capability. Many attempts have been performed to solve such issues, including the mechanism study and strategies to improve the electrochemical performance. This article provides a brief review and future perspective on the main challenges of the high-capacity Li-rich Mn-based cathodes for Li-ion batteries.
  • 加载中
    1. [1]

      Mohanty, D.; Li, J.; Abraham, D. P.; Huq, A.; Payzant, E. A.; Wood III, D. L.; Daniel, C. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem. Mater. 2014, 26, 6272–6280.  doi: 10.1021/cm5031415

    2. [2]

      Liu, C.; Neale, Z. G.; Cao, G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 2016, 19, 109–123.  doi: 10.1016/j.mattod.2015.10.009

    3. [3]

      Shunmugasundaram, R.; Senthil Arumugam, R.; Dahn, J. R. High capacity Li-rich positive electrode materials with reduced first-cycle irreversible capacity loss. Chem. Mater. 2015, 27, 757–767.  doi: 10.1021/cm504583y

    4. [4]

      Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, A.; Thevuthasan, S.; Baer, D.; Zhang, J.; Browning, N. D.; Liu, J.; Wang, C. (2012). Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 2013, 7, 760–767.  doi: 10.1021/nn305065u

    5. [5]

      Liu, W.; Oh, P.; Liu, X.; Myeong, S.; Cho, W., Cho, J. Countering voltage decay and capacity fading of lithium-rich cathode material at 60 ℃ by hybrid surface protection layers. Adv. Energy Mater. 2015, 5, 1500274.  doi: 10.1002/aenm.201500274

    6. [6]

      Yu, X.; Lyu, Y.; Gu, L.; Wu, H.; Bak, S. M.; Zhou, Y.; Amine, K.; Ehrlich, S.; Li, H.; Nam, K.; Yang, X. Q. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 2014, 4, 1300950.  doi: 10.1002/aenm.201300950

    7. [7]

      Seo, D. H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 2016, 8, 692–697.  doi: 10.1038/nchem.2524

    8. [8]

      Gent, W. E.; Lim, K.; Liang, Y.; Li, Q.; Barnes, T.; Ahn, S. J.; Chueh, W. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 2017, 8, 2091.  doi: 10.1038/s41467-017-02041-x

    9. [9]

      Hy, S.; Felix, F.; Rick, J.; Su, W. N.; Hwang, B. J. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0≤x≤0.5). J. Am. Chem. Soc. 2014, 136, 999–1007.  doi: 10.1021/ja410137s

    10. [10]

      Li, X.; Qiao, Y.; Guo, S.; Xu, Z.; Zhu, H.; Zhang, X.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv. Mater. 2018, 30, 1705197.  doi: 10.1002/adma.201705197

    11. [11]

      Shen, C. H.; Wang, Q.; Fu, F.; Huang, L.; Lin, Z.; Shen, S. Y.; Su, H.; Zheng, X.; Xu, B.; Li, J. T.; Sun, S. G. Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge–discharge cycle: in situ XRD characterization. ACS Appl. Mater. Inter. 2014, 6, 5516–5524.  doi: 10.1021/am405844b

    12. [12]

      Yin, Z. W.; Peng, X. X.; Li, J. T.; Shen, C. H.; Deng, Y. P.; Wu, Z. G.; Zhang, T.; Zhang, Q.; Mo, Y.; Wang, K.; Huang, L.; Zheng, H.; Sun, S. G. Revealing of the activation pathway and cathode electrolyte interphase evolution of Li-Rich 0.5Li2MnO3·0.5LiNi0.3Co0.3Mn0.4O2 cathode by in situ electrochemical quartz crystal microbalance. ACS Appl. Mater. Inter. 2019, 11, 16214–16222.  doi: 10.1021/acsami.9b02236

    13. [13]

      Shen, C. H.; Shen, S. Y.; Fu, F.; Shi, C. G.; Zhang, H. Y.; Pierre, M. J.; Su, H.; Wang, Q.; Xu, B.; Huang, L.; Li, J. T.; Sun. S. G. New insight into structural transformation in Li-rich layered oxide during the initial charging. J. Mater. Chem. A 2015, 3, 12220–12229.  doi: 10.1039/C5TA01849H

    14. [14]

      Shen, S.; Hong, Y.; Zhu, F.; Cao, Z.; Li, Y.; Ke, F.; Fan, J.; Zhou, L.; Wu, L.; Dai, P.; Cai, M.; Huang, L.; Zhou, Z.; Li, J.; Wu, Q.; Sun. S. G. Tuning electrochemical properties of Li-rich layered oxide cathodes by adjusting Co/Ni ratios and mechanism investigation using in situ X-ray diffraction and online continuous flow differential electrochemical mass spectrometry. ACS Appl. Mater. Inter. 2018, 10, 12666–12677.  doi: 10.1021/acsami.8b00919

    15. [15]

      Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-Ion batteries. Adv. Energy Mater. 2016, 6, 1502398.  doi: 10.1002/aenm.201502398

    16. [16]

      Zheng, J.; Gu, M.; Genc, A.; Xiao, J.; Xu, P.; Chen, X.; Zhu, Z.; Zhao, W.; Pullan, L.; Wang, C.; Zhang, J. G. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 2014, 14, 2628–2635  doi: 10.1021/nl500486y

    17. [17]

      Bloom, I.; Trahey, L.; Abouimrane, A.; Belharouak, I.; Zhang, X.; Wu, Q.; Lu, W.; Abraham, D.; Bettge, M.; Elam, J.; Meng, X.; Burrell, A.; Ban, C.; Tenent, R.; Nanda, J.; Dudney, N. Effect of interface modifications on voltage fade in 0.5Li2MnO3·0.5LiNi0.375Mn0.375Co0.25O2 cathode materials. J. Power Sources 2014, 249, 509–514.  doi: 10.1016/j.jpowsour.2013.10.035

    18. [18]

      Zheng, F.; Yang, C.; Xiong, X.; Xiong, J.; Hu, R.; Chen, Y.; Liu, M. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem. Int. Edit. 2015, 54, 13058–13062.  doi: 10.1002/anie.201506408

    19. [19]

      Zhang, T.; Li, J. T.; Liu, J.; Deng, Y. P.; Wu, Z. G.; Yin, Z. W.; Guo, D.; Huang, L.; Sun, S. G. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. Chem. Commun. 2016, 52, 4683–4686.  doi: 10.1039/C5CC10534J

    20. [20]

      Hu, S.; Pillai, A. S.; Liang, G.; Pang, W. K.; Wang, H.; Li, Q.; Guo, Z. Li-rich layered oxides and their practical challenges: recent progress and perspectives. Electrochem. Energy Rev. 2019, 1–35.

    21. [21]

      Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 2010, 22, 4364–4367.  doi: 10.1002/adma.201001578

    22. [22]

      Fu, F.; Deng, Y. P.; Shen, C. H.; Xu, G. L.; Peng, X. X.; Wang, Q.; Xu, Y.; Fang, J.; Huang, L.; Sun, S. G. A hierarchical micro/nanostructured 0.5Li2MnO3·0.5LiMn0.4Ni0.3Co0.3O2 material synthesized by solvothermal route as high rate cathode of lithium ion battery. Electrochem. Commun. 2014, 44, 54–58.  doi: 10.1016/j.elecom.2014.04.013

    23. [23]

      Fu, F.; Yao, Y.; Wang, H.; Xu, G. L.; Amine, K.; Sun, S. G.; Shao, M. Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries. Nano Energy 2017, 35, 370–378.  doi: 10.1016/j.nanoen.2017.04.005

    24. [24]

      Deng, Y. P.; Fu, F.; Wu, Z. G.; Yin, Z. W.; Zhang, T.; Li, J. T.; Huang, L.; Sun, S. G.; Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J. Mater. Chem. A 2016, 4, 257–263.  doi: 10.1039/C5TA06945A

    25. [25]

      Yin, Z. W.; Wu, Z. G.; Deng, Y. P.; Zhang, T.; Su, H.; Fang, J. C.; Xu, B.; Wang, J.; Li, J. T.; Huang, L.; Zhou, X.; Sun, S. G. A synergistic effect in a composite cathode consisting of spinel and layered structures to increase the electrochemical performance for Li-ion batteries. J. Phys. Chem. C 2016, 120, 25647–25656.  doi: 10.1021/acs.jpcc.6b07169

    26. [26]

      Huang, W.; Xing, L.; Wang, Y.; Xu, M.; Li, W.; Xie, F.; Xia, S. 4-(Trifluoromethyl)-benzonitrile: a novel electrolyte additive for lithium nickel manganese oxide cathode of high voltage lithium ion battery. J. Power Sources 2014, 267, 560–565.  doi: 10.1016/j.jpowsour.2014.05.124

    27. [27]

      Li, J.; Zhang, L.; Yu, L.; Fan, W.; Wang, Z.; Yang, X.; Lin, Y.; Xing, L.; Xu, M.; Li, W. Understanding interfacial properties between Li-rich layered oxide and electrolyte containing triethyl borate. J. Phys. Chem. C 2016, 120, 26899–26907.  doi: 10.1021/acs.jpcc.6b09097

    28. [28]

      Kong, D.; Hu, J.; Chen, Z.; Song, K.; Li, C.; Weng, M.; Li, M.; Wang, R.; Liu, T.; Liu, J.; Zhang, M.; Xiao, Y.; Pan, F. Ti-Gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery. Adv. Energy Mater. 2019, 1901756.

    29. [29]

      Zheng, J.; Ye, Y.; Liu, T.; Xiao, Y.; Wang, C.; Wang, F.; Pan, F. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Accounts Chem. Res. 2019, 52, 2201–2209.  doi: 10.1021/acs.accounts.9b00033

    30. [30]

      Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y. S.; Edstrom, K.; Guo, J.; Chadwick, A. V.; Duda, L. C.; Bruce, P. G. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 2016, 8, 684–691.  doi: 10.1038/nchem.2471

    31. [31]

      Armstrong, A. R.; Holzapfel, M.; Novák, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 2006, 128, 8694–8698.  doi: 10.1021/ja062027+

  • 加载中
    1. [1]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    2. [2]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    3. [3]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    4. [4]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    5. [5]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    6. [6]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    7. [7]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    8. [8]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    9. [9]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    10. [10]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    11. [11]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    12. [12]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    13. [13]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    14. [14]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    15. [15]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    16. [16]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    17. [17]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    18. [18]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    19. [19]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    20. [20]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

Metrics
  • PDF Downloads(15)
  • Abstract views(734)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return