-
[1]
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652.
doi: 10.1038/451652a
-
[2]
Evarts, E. E. To the limits of lithium. Nature 2015, 526, S93.
doi: 10.1038/526S93a
-
[3]
Xu, K. Electrolytes and interphasial chemistry in Li ion devices. Energies 2010, 3, 135–154.
doi: 10.3390/en3010135
-
[4]
Whittingham, M. S.; Panella, J. A. Formation of stoichiometric titanium disulfide. Mater. Res. Bull. 1981, 16, 37–45.
doi: 10.1016/0025-5408(81)90175-6
-
[5]
Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.
doi: 10.1016/0025-5408(80)90012-4
-
[6]
Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.
doi: 10.1149/1.1837571
-
[7]
Yoshino, A.; Sanechika, K.; Nakajima, T. U. S. Patent No. 4, 668, 595. Washington, DC: U. S. Patent and Trademark Office. 1987.
-
[8]
Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2009, 22, 587–603.
-
[9]
Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443.
doi: 10.1021/cr5003003
-
[10]
Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Amine, K. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotech. 2018, 13, 715.
doi: 10.1038/s41565-018-0183-2
-
[11]
Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Meng, Y. S. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.
doi: 10.1038/s41560-019-0338-x
-
[12]
Yoo, H. D.; Markevich, E.; Salitra, G.; Sharon, D.; Aurbach, D. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater. Today 2014, 17, 110–121.
doi: 10.1016/j.mattod.2014.02.014
-
[13]
Liu, Y.; Zhou, G.; Liu, K.; Cui, Y. Design of complex nanomaterials for energy storage: past success and future opportunity. Acc. Chem. Res. 2017, 50, 2895–2905.
doi: 10.1021/acs.accounts.7b00450
-
[14]
Ma, D.; Cao, Z.; Hu, A. Si-based anode materials for Li-ion batteries: a mini review. Nano-Micro. Lett. 2014, 6, 347–358.
doi: 10.1007/s40820-014-0008-2
-
[15]
Zamfir, M. R.; Nguyen, H. T.; Moyen, E.; Lee, Y. H.; Pribat, D. Silicon nanowires for Li-based battery anodes: a review. J. Mater. Chem. A 2013, 1, 9566–9586.
doi: 10.1039/c3ta11714f
-
[16]
Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 2008, 3, 31.
doi: 10.1038/nnano.2007.411
-
[17]
Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.
doi: 10.1016/j.nantod.2012.08.004
-
[18]
Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 2014, 4, 1300882.
doi: 10.1002/aenm.201300882
-
[19]
Wang, J.; Liao, L.; Li, Y.; Zhao, J.; Shi, F.; Yan, K.; Cui, Y. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett. 2018, 18, 7060–7065.
doi: 10.1021/acs.nanolett.8b03065
-
[20]
Wang, J.; Liao, L.; Lee, H. R.; Shi, F.; Huang, W.; Zhao, J.; Cui, Y. Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 2019, 61, 404–410.
doi: 10.1016/j.nanoen.2019.04.070
-
[21]
Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H.; Cui, Y. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2008, 9, 491–495.
-
[22]
Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Cui, Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotech. 2012, 7, 310.
doi: 10.1038/nnano.2012.35
-
[23]
Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321.
doi: 10.1021/nl3014814
-
[24]
Li, Y.; Yan, K.; Lee, H. W.; Lu, Z.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.
doi: 10.1038/nenergy.2015.29
-
[25]
Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.
doi: 10.1021/nl201470j
-
[26]
Lu, Z.; Liu, N.; Lee, H. W.; Zhao, J.; Li, W.; Li, Y.; Cui, Y. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 2015, 9, 2540–2547.
doi: 10.1021/nn505410q
-
[27]
Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.
doi: 10.1038/ncomms2941
-
[28]
Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042.
doi: 10.1038/nchem.1802
-
[29]
Liu, N.; Hu, L.; McDowell, M. T.; Jackson, A.; Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 2011, 5, 6487–6493.
doi: 10.1021/nn2017167
-
[30]
Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Choi, J. W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 2015, 16, 282–288.
-
[31]
Zhao, J.; Lu, Z.; Liu, N.; Lee, H. W.; McDowell, M. T.; Cui, Y. Dry-air-stable lithium silicide-lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nat. Commun. 2014, 5, 5088.
doi: 10.1038/ncomms6088
-
[32]
Zhao, J.; Sun, J.; Pei, A.; Zhou, G.; Yan, K.; Liu, Y.; Cui, Y. A general prelithiation approach for group IV elements and corresponding oxides. Energy Storage Mater. 2018, 10, 275–281.
doi: 10.1016/j.ensm.2017.06.013