Citation: Guo-Min LI, Bing WANG, Rui WANG. g-C3N4/Ag/GO Composite Photocatalyst with Efficient Photocatalytic Performance: Synthesis, Characterization, Kinetic Studies, Toxicity Assessment and Degradation Mechanism[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1675-1688. doi: 10.14102/j.cnki.0254-5861.2011-2685 shu

g-C3N4/Ag/GO Composite Photocatalyst with Efficient Photocatalytic Performance: Synthesis, Characterization, Kinetic Studies, Toxicity Assessment and Degradation Mechanism

  • Corresponding author: Rui WANG, wangrui001@hit.edu.cn
  • Received Date: 4 December 2019
    Accepted Date: 6 March 2020

    Fund Project: the National Natural Science Foundation of China 11374080

Figures(10)

  • The g-C3N4/Ag/GO (CNAG) photocatalysts were synthesized by a facile two-step reaction route. The as-prepared CNAG samples were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and ultraviolet-visible diffuse reflectance spectroscopy techniques (UV-vis DRS). The photocatalytic activity was obtained by degrading rhodamine B (RhB) under simulated sunlight and the results showed that photocatalytic activity of CNAG was much higher than that of pure g-C3N4 and g-C3N4/Ag. When the mass ratio of GO was 6%, the as-prepared CNAG-6% sample possessed the highest photocatalytic activity and the kinetic constant of RhB degradation was 0.077 min-1, which was almost 4.3 times higher than that of pure g-C3N4 (0.018 min-1) and 2.5 times higher than that of the g-C3N4/Ag (0.031 min-1) composite, respectively. The toxicity of CNAG samples was assessed via seed germination experiment and no significant inhibitory effect was observed. The enhanced photocatalytic activity could be attributed to the synergistic effect of partial surface plasma resonance (SPR) effect of Ag, strong visible light absorption and the high separation efficiency of photon-generated carrier. The CNAG-6% sample exhibited excellent stability during the cycle experiment. Finally, a possible photocatalytic mechanism was proposed.
  • 加载中
    1. [1]

      Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234−5244.  doi: 10.1039/C4CS00126E

    2. [2]

      Luo, J.; Zhou, X.; Ma, L.; Xu, X. Rational construction of Z-scheme Ag2CrO4/g-C3N4 composites with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2016, 390, 357−367.  doi: 10.1016/j.apsusc.2016.08.096

    3. [3]

      Wu, S.; Li, K.; Zhang, W. On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 2015, 324, 324−331.  doi: 10.1016/j.apsusc.2014.10.161

    4. [4]

      Liu, Q.; Guo, Y.; Chen, Z.; Zhang, Z.; Fang, X. Constructing a novel ternary Fe(Ⅲ)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect. Appl. Catal., B 2016, 183, 231−241.  doi: 10.1016/j.apcatb.2015.10.054

    5. [5]

      Wang, J.; Cong, J.; Hui, X.; Wang, J.; Hong, L.; Mei, L.; Gao, J.; Ni, Q. Q.; Yao, J.; Wang, J. Facile gel-based morphological control of Ag/g-C3N4 porous nanofibers for photocatalytic hydrogen generation. ACS Sustain. Chem. Eng. 2017, 5, 10633−10639.  doi: 10.1021/acssuschemeng.7b02608

    6. [6]

      Wang, X.; Feng, S.; Zhao, W.; Zhao, D.; Chen, S. Ag/polyaniline heterostructured nanosheets loaded with g-C3N4 nanoparticles for highly efficient photocatalytic hydrogen generation under visible light. New J. Chem. 2017, 41, 9354−9360.  doi: 10.1039/C7NJ01903C

    7. [7]

      Ma, F.; Sun, C.; Shao, Y.; Wu, Y.; Huang, B.; Hao, X. One-step exfoliation and fluorination of g-C3N4 nanosheets with enhanced photocatalytic activities. New J. Chem. 2017, 41, 3061−3067.  doi: 10.1039/C7NJ00035A

    8. [8]

      Zhang, F.; Zhuang, H. Q.; Zhang, W.; Yin, J.; Cao, F. H.; Pan, Y. X. Noble-metal-free CuS/CdS photocatalyst for efficient visible-light-driven photocatalytic H2 production from water. Catal. Today 2018, 330, 203−208.

    9. [9]

      Liu, Y.; Huang, B.; Ying, D.; Zhang, X.; Qin, X.; Jiang, M.; Whangbo, M. H. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal. Commun. 2010, 11, 210−213.

    10. [10]

      Li, H.; Gao, Y.; Wu, X.; Lee, P. H.; Shih, K. Fabrication of heterostructured g-C3N4/Ag-TiO2 hybrid photocatalyst with enhanced performance of photocatalytic conversion of CO2 under simulated sunlight irradiation. Appl. Surf. Sci. 2017, 402, 198−207.  doi: 10.1016/j.apsusc.2017.01.041

    11. [11]

      Oftadeh, M.; Esfahani, M. N.; Salavati-Niasari, M.; Mir, N. Fabrication of highly efficient dye-sensitized solar cell and CO2 reduction photocatalyst using TiO2 nanoparticles prepared by spin coating-assisted sol-gel method. J. Iran. Chem. Soc. 2012, 9, 143−149.  doi: 10.1007/s13738-011-0017-8

    12. [12]

      Yong, W. K.; Sang, H. P. The development of photocatalyst with hybrid material CNT/TiO2 thin films for dye-sensitized solar cell. J. Nanomater. 2013, 2013, 2745−2756.
       

    13. [13]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K., Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76−80.  doi: 10.1038/nmat2317

    14. [14]

      Kuang, P. Y.; Su, Y. Z.; Chen, G. F.; Luo, Z.; Xing, S. Y.; Li, N.; Liu, Z. Q. g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance. Appl. Surf. Sci. 2015, 358, 296−303.  doi: 10.1016/j.apsusc.2015.08.066

    15. [15]

      Mousavi, M.; Habibi-Yangjeh, A.; Pouran, S. R. Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci.-Mater. Electron. 2017, 29, 1719−1747.

    16. [16]

      Mousavi, M.; Habibi-Yangjeh, A. Magnetically recoverable highly efficient visible-light-active g-C3N4/Fe3O4/Ag2WO4/AgBr nanocomposites for photocatalytic degradations of environmental pollutants. Adv. Powder Technol. 2017, 29, 94−105.

    17. [17]

      Jiang, B.; Huang, Y.; Yan, Q.; Yan, H.; Tian, C. Layer stacked iodine and phosphorus co-doped C3N4 for enhanced visible-light photocatalytic hydrogen evolution. ChemCatChem. 2017, 9, 4083−4089.  doi: 10.1002/cctc.201700786

    18. [18]

      Gao, J.; Wang, Y.; Zhou, S.; Lin, W.; Kong, Y. A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible light photocatalytic performances. ChemCatChem. 2017, 9, 1708−1715.  doi: 10.1002/cctc.201700492

    19. [19]

      Asadzadeh-Khaneghah, S.; Habibi-Yangjeh, A.; Seifzadeh, D. Graphitic carbon nitride nanosheets coupled with carbon dots and BiOI nanoparticles: boosting visible-light-driven photocatalytic activity. J. Taiwan Inst. Chem. Eng. 2018, 87, 98−111.  doi: 10.1016/j.jtice.2018.03.017

    20. [20]

      Bu, Y.; Chen, Z. Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generated by O-C3N4@TiO2 with quasi-shell-core nanostructure. Electrochim. Acta 2014, 144, 42−49.  doi: 10.1016/j.electacta.2014.08.095

    21. [21]

      Wang, F.; Feng, Y.; Ping, C.; Wang, Y.; Su, Y.; Zhang, Q.; Zeng, Y.; Xie, Z.; Liu, H.; Yang, L. Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: kinetics, mechanism, and antibacterial activity elimination. Appl. Catal., B 2018, 227, 114−122.  doi: 10.1016/j.apcatb.2018.01.024

    22. [22]

      Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: a review. Nanoscale 2014, 7, 15−37.

    23. [23]

      Habibi-Yangjeh, A.; Mousavi, M. Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: novel magnetic photocatalysts with drastically enhanced performance under visible-light. Adv. Powder Technol. 2018, 29, 1379−1392.  doi: 10.1016/j.apt.2018.02.034

    24. [24]

      Wu, J.; Miao, X.; Shen, X.; Ji, Z.; Wang, J.; Wang, T.; Liu, M. An all-solid-state Z-scheme g-C3N4/Ag/Ag3VO4 photocatalyst with enhanced visible-light photocatalytic performance. Eur. J. Inorg. Chem. 2017, 2845−2853.

    25. [25]

      Zhang, W.; Zhou, L.; Deng, H. Ag modified g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation. J. Mol. Catal. A: Chem. 2016, 423, 270−276.  doi: 10.1016/j.molcata.2016.07.021

    26. [26]

      Chen, Q.; Liu, H.; Xin, Y.; Cheng, X. Coupling immobilized TiO2 nanobelts and Au nanoparticles for enhanced photocatalytic and photoelectrocatalytic activity and mechanism insights. Chem. Eng. J. 2014, 241, 145−154.  doi: 10.1016/j.cej.2013.12.028

    27. [27]

      Wang, G.; Chen, Q.; Xin, Y.; Liu, Y.; Zang, Z.; Hu, C.; Zhang, B. Construction of graphene-WO3/TiO2 nanotube array photoelectrodes and its enhanced performance for photocatalytic degradation of dimethyl phthalate. Electrochim. Acta 2016, 222, 1903−1913.  doi: 10.1016/j.electacta.2016.11.182

    28. [28]

      Yan, J.; Zhou, C.; Li, P.; Chen, B.; Zhang, S.; Dong, X.; Xi, F.; Liu, J. Nitrogen-rich graphitic carbon nitride: controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance. Colloids Surf., A 2016, 508, 257−264.  doi: 10.1016/j.colsurfa.2016.08.067

    29. [29]

      Jiang, D.; Chen, L.; Xie, J.; Chen, M. Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition. Dalton Trans. 2014, 43, 4878−4885.  doi: 10.1039/C3DT53526F

    30. [30]

      Cao, Y.; Xing, Z.; Li, Z.; Wu, X.; Hu, M.; Yan, X.; Zhu, Q.; Yang, S.; Zhou, W. Mesoporous black TiO2-x/Ag nanospheres coupled with g-C3N4 nanosheets as 3D/2D ternary heterojunctions visible light photocatalysts. J. Hazard. Mater. 2017, 343, 181−190.

    31. [31]

      Martin, D. J.; Qiu, K.; Shevlin, S. A.; Handoko, A. D.; Chen, X.; Guo, Z.; Tang, J. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. Engl. 2015, 53, 9240−9245.

    32. [32]

      Wang, J.; Yao, H. C.; Fan, Z. Y.; Zhang, L.; Wang, J.; Zang, S. Q.; Li, Z. Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl. Mat. Interfaces 2016, 8, 3765−3775.  doi: 10.1021/acsami.5b09901

    33. [33]

      Luo, J.; Zhou, X.; Ma, L.; Xu, X. Rational construction of Z-scheme Ag2CrO4/g-C3N4 composites with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2016, 390, 357−367.  doi: 10.1016/j.apsusc.2016.08.096

    34. [34]

      Zhou, Y.; Zhang, L.; Liu, J.; Fan, X.; Wang, B.; Wang, M.; Ren, W.; Wang, J.; Li, M.; Shi, J. Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 2015, 3, 3862−3867.  doi: 10.1039/C4TA05292G

    35. [35]

      Fontelles-Carceller, O.; Muñoz-Batista, M. J.; Fernández-García, M.; Kubacka, A. Interface effects in sunlight-driven Ag/g-C3N4 composite catalysts: study of the toluene photodegradation quantum efficiency. ACS Appl. Mat. Interfaces 2016, 8, 2617−2627.  doi: 10.1021/acsami.5b10434

    36. [36]

      Zhang, W.; Zhou, L.; Deng, H. Ag modified g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation. J. Mol. Catal. A: Chem. 2016, 423, 270−276.  doi: 10.1016/j.molcata.2016.07.021

    37. [37]

      Gu, L.; Wang, J.; Zou, Z.; Han, X. Graphitic-C3N4-hybridized TiO2 nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity. J. Hazard. Mater. 2014, 268, 216−223.  doi: 10.1016/j.jhazmat.2014.01.021

    38. [38]

      Baeissa, E. S. Synthesis and characterization of sulfur-titanium dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation. Chin. J. Catal. 2015, 36, 698−704.  doi: 10.1016/S1872-2067(14)60320-X

    39. [39]

      Zhu, Z.; Lu, Z.; Wang, D.; Tang, X.; Yan, Y.; Shi, W.; Wang, Y.; Gao, N.; Yao, X.; Dong, H. Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl. Catal., B 2016, 182, 115−122.  doi: 10.1016/j.apcatb.2015.09.029

    40. [40]

      Li, H.; Liu, Y.; Cui, Y.; Zhang, W.; Fu, C.; Wang, X. Facile synthesis and enhanced visible-light photoactivity of DyVO4/g-C3N4 composite semiconductors. Appl. Catal., B 2016, 183, 426−432.  doi: 10.1016/j.apcatb.2015.11.012

    41. [41]

      Zhao, R.; Sun, X.; Jin, Y.; Han, J.; Wang, L.; Liu, F. Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride. J. Mater. Sci. 2019, 54, 5445−5456.  doi: 10.1007/s10853-018-03278-7

    42. [42]

      Luo, J.; Zhou, X.; Ma, L.; Xu, X. Rational construction of Z-scheme Ag2CrO4/g-C3N4 composites with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2016, 390, 357−367.  doi: 10.1016/j.apsusc.2016.08.096

    43. [43]

      Zhang, W.; Zhou, L.; Deng, H. Ag modified g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation. J. Mol. Catal. A: Chem. 2016, 423, 270−276.  doi: 10.1016/j.molcata.2016.07.021

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    3. [3]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    4. [4]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    5. [5]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    6. [6]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    10. [10]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    13. [13]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    16. [16]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    20. [20]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

Metrics
  • PDF Downloads(4)
  • Abstract views(340)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return