Enhanced CO2 Electrolysis with Mn-doped SrFeO3-δ Cathode
- Corresponding author: Li-Zhen GAN, lzgan@fafu.edu.cn
Citation:
Shi-Sheng HOU, Ze-Tong XU, You-Kai ZHANG, Kui XIE, Li-Zhen GAN. Enhanced CO2 Electrolysis with Mn-doped SrFeO3-δ Cathode[J]. Chinese Journal of Structural Chemistry,
;2020, 39(9): 1662-1668.
doi:
10.14102/j.cnki.0254-5861.2011-2672
Myung, J.; Neagu, D.; Miller, D. N.; Irvine, J. T. S. Switching on electrocatalytic activity in solid oxide cells. Nature 2016, 537, 528–531.
doi: 10.1038/nature19090
Zhou, Y.; Zhou, Z.; Song, Y.; Zhang, X.; Guan, F.; Lv, H.; Liu, Q.; Miao, S.; Wang, G.; Bao, X. Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. Nano Energy 2018, 50, 43–51.
doi: 10.1016/j.nanoen.2018.04.054
Vollestad, E.; Strandbakke, R.; Tarach, M.; Catalan-Martinez, D.; Fontaine, M. L.; Beeaff, D.; Clark, D. R.; Serra, J. M.; Norby, T. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nat. Mater. 2019, 18, 752–759.
doi: 10.1038/s41563-019-0388-2
Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S.; Liang, Y.; Feng, Z.; Wang, H. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415–8.
doi: 10.1038/s41467-018-02819-7
Zheng, Y.; Wang, J.; Yu, B.; Zhang, W.; Chen, J.; Qiao, J.; Zhang, J. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem. Soc. Rev. 2017, 46, 1427–1463.
doi: 10.1039/C6CS00403B
Ye, L.; Zhang, M.; Huang, P.; Guo, G.; Hong, M.; Li, C.; Irvine, J. T. S.; Xie, K. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 2017, 8, 14785–8.
doi: 10.1038/ncomms14785
Liu, S.; Liu, Q.; Luo, J. The excellence of La(Sr)Fe(Ni)O3 as an active and efficient cathode for direct CO2 electrochemical reduction at elevated temperatures. J. Mater. Chem. A 2017, 5, 2617–2680.
Meng, X.; Gong, X.; Yang, N.; Yin, Y.; Tan, X.; Ma, Z. F. Carbon-resistant Ni-YSZ/Cu-CeO2-YSZ dual-layer hollow fiber anode for micro tubular solid oxide fuel cell. Int. J. Hydrogen Energy 2014, 39, 3879–3886.
doi: 10.1016/j.ijhydene.2013.12.168
Laosiripojana, N.; Assabumrungrat, S. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: the possible use of these fuels in internal reforming SOFC. J. Power Sources 2007, 163, 943–951.
doi: 10.1016/j.jpowsour.2006.10.006
Hecht, E. S.; Gupta, G. K.; Zhu, H. Y.; Dean, A. M.; Kee, R. J.; Maier, L.; Deutschmann, O. Methane reforming kinetics within a Ni-YSZ SOFC anode support. Appl. Catal. A 2005, 295, 40–51.
doi: 10.1016/j.apcata.2005.08.003
Hauch, A.; Mogensen, M. Ni/YSZ electrode degradation studied by impedance spectroscopy effects of gas cleaning and current density. Solid State Ionics 2010, 181, 745–753.
doi: 10.1016/j.ssi.2010.04.001
Oskouyi, O. E.; Maghsoudipour, A.; Shahmiri, M.; Hasheminiasari, M. Preparation of YSZ electrolyte coating on conducting porous Ni-YSZ cermet by DC and pulsed constant voltage electrophoretic deposition process for SOFCs applications. J. Alloys Compd. 2019, 795, 361–369.
doi: 10.1016/j.jallcom.2019.04.334
Bidrawn, F.; Kim, G.; Corre, G.; Irvine, J. T. S.; Vohs, J. M.; Gorte, R. J. Efficient reduction of CO2 in a solid oxide electrolyzer. Electrochem. Solid State Lett. 2008, 11, B167–B170.
doi: 10.1149/1.2943664
Xie, K.; Umezawa, N.; Zhang, N.; Reunchan, P.; Zhang, Y.; Ye, J. Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy Environ. Sci. 2011, 4, 4211–4219.
doi: 10.1039/c1ee01594j
Wang, Y.; Liu, T.; Fang, S.; Chen, F. Syngas production on a symmetrical solid oxide H2O/CO2 coelectrolysis cell with Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 electrodes. J. Power Sources 2016, 305, 240–248.
doi: 10.1016/j.jpowsour.2015.11.097
Tsekouras, G.; Neagu, D.; Irvine, J. T. S. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci. 2013, 6, 256–266.
doi: 10.1039/C2EE22547F
Zhu, C.; Hou, S.; Hou, L.; Xie, K. Perovskite SrFeO3-δ decorated with Ni nanoparticles for high temperature carbon dioxide electrolysis. Int. J. Hydrogen Energy 2018, 43, 17040–17047.
doi: 10.1016/j.ijhydene.2018.07.148
Tian, Y.; Zhen, H.; Zhang, L.; Chi, B.; Li, J. Direct electrolysis of CO2 in symmetrical solid oxide electrolysis cell based on La0.6Sr0.4Fe0.8Ni0.2O3-δ electrode. J. Electrochem. Soc. 2018, 165, F17–F23.
doi: 10.1149/2.0351802jes
Zhang, L.; Zhu, X.; Cao, Z. Q.; Wang, Z.; Li, W.; Zhu, L.; Li, P.; Huang, X.; Lu, Z. Pr and Ti co-doped strontium ferrite as a novel hydrogen electrode for solid oxide electrolysis cell. Electrochim. Acta 2017, 232, 542–549.
doi: 10.1016/j.electacta.2017.02.168
Li, Z.; Ye, L. T.; Xie, K. Perovskite Sr0.9Fe0.9Zr0.1O3-δ: redox-stable structure, oxygen vacancy, electrical properties and steam electrolysis performance. Chin. J. Struct. Chem. 2018, 37, 65–74.
Gan, L.; Ye, L.; Ruan, C.; Chen, S.; Xie, K. Redox-reversible iron orthovanadate cathode for solid oxide steam electrolyzer. Adv. Sci. 2016, 3, 1500186–6.
doi: 10.1002/advs.201500186
Xiao, G.; Liu, Q.; Wang, S.; Komvokis, V. G.; Amiridis, M. D.; Heyden, A.; Ma, S.; Chen, F. Synthesis and characterization of Mo-doped SrFeO3-δ as cathode materials for solid oxide fuel cells. J. Power Sources 2012, 202, 63–69.
doi: 10.1016/j.jpowsour.2011.11.021
Lu, J.; Zhu, C.; Pan, C.; Lin, W.; Lemmon, J. P.; Chen, F.; Li, C.; Xie, K. Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser. Sci. Adv. 2018, 4, eaar5100–10.
doi: 10.1126/sciadv.aar5100
Zhu, C.; Hou, S.; Hu, X.; Lu, J.; Chen, F.; Xie, K. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer. Nat. Commun. 2019, 10, 1173–8.
doi: 10.1038/s41467-019-09083-3
Maslan, S.; Sira, M.; Skalicka, T.; Bergsten, T. Four-terminal pair digital sampling impedance bridge up to 1M Hz. IEEE Trans. Instrum. Meas. 2019, 68, 1860–1869.
doi: 10.1109/TIM.2019.2908649
Saher, S.; Naqash, S.; Boukamp, B. A.; Hu, B.; Xia, C.; Bouwmeester, H. J. M. Influence of ionic conductivity of the nano-particulate coating phase on oxygen surface exchange of La0.58Sr0.4Co0.2Fe0.8O3-δ. J. Mater. Chem. A 2017, 5, 4991–4999.
doi: 10.1039/C6TA10954C
Li, M.; Sun, Z.; Yang, W.; Hong, T.; Zhu, Z.; Zhang, Y.; Wu, X.; Xia, C. Mechanism for the enhanced oxygen reduction reaction of La0.6Sr0.4Co0.2Fe0.8O3-δ by strontium carbonate. Phys. Chem. Chem. Phys. 2017, 19, 503–509.
doi: 10.1039/C6CP06204K
Schmidt, M.; Campbell, S. J. Crystal and magnetic structures of Sr2Fe2O5 at elevated temperature. J. Solid State Chem. 2001, 156, 292–304.
doi: 10.1006/jssc.2000.8998
Nazzal, A. I.; Lee, V. Y.; Engler, E. M.; Jacowitz, R. D.; Tokura, Y.; Torrance, J. B. New procedure for determination of [Cu-O]+p charge and oxygen-content in high-TC copper oxides. Physica C 1988, 153, 1367–1368.
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Yuchen Zhang , Lifeng Ding , Zhenghe Xie , Xin Zhang , Xiaofeng Sui , Jian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676
Jianjun Fang , Kunchen Xie , Yongli Song , Kangyi Zhang , Fei Xu , Xiaoze Shi , Ming Ren , Minzhi Zhan , Hai Lin , Luyi Yang , Shunning Li , Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504
Ruonan Yang , Jiajia Li , Dongmei Zhang , Xiuqi Zhang , Xia Li , Han Yu , Zhanhu Guo , Chuanxin Hou , Gang Lian , Feng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595
Zhuangzhuang Zhang , Yaru Qiao , Jun Zhao , Dai-Huo Liu , Mengmin Jia , Hongwei Tang , Liang Wang , Dongmei Dai , Bao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xiaxia Xing , Xiaoyu Chen , Zhenxu Li , Xinhua Zhao , Yingying Tian , Xiaoyan Lang , Dachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555