Citation: Shi-Sheng HOU, Ze-Tong XU, You-Kai ZHANG, Kui XIE, Li-Zhen GAN. Enhanced CO2 Electrolysis with Mn-doped SrFeO3-δ Cathode[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1662-1668. doi: 10.14102/j.cnki.0254-5861.2011-2672 shu

Enhanced CO2 Electrolysis with Mn-doped SrFeO3-δ Cathode

  • Corresponding author: Li-Zhen GAN, lzgan@fafu.edu.cn
  • Received Date: 20 November 2019
    Accepted Date: 8 February 2020

    Fund Project: the National Natural Science Foundation of China 21902025the National Natural Science Foundation of China 91845202the National Natural Science Foundation of China 21750110433Innovative Project of the Education Department of Fujian Province JAT170174Natural Science Foundation of Fujian Province 2018J05012Dalian National Laboratory for Clean Energy DNL180404Strategic Priority Research Program of Chinese Academy of Sciences XDB2000000

Figures(6)

  • Solid oxide carbon dioxide electrolysers are expected to play a key role in carbon-neutral energy landscape. However, the limited activity of traditional ceramic cathodes still restricts the electrochemical performance. Here we report the doping of Mn at the B site of SrFeO3-δ cathode to improve CO2 electrolysis. The oxygen vacancy concentration is increased by ~30% with Mn doping while the surface oxygen exchange coefficients are enhanced by ~10 times. The chemisorption of CO2 indicates the presence of chemical intermediate state between CO2 molecule and carbonate ion on the oxygen-deficient cathode surface which therefore leads to the desorption temperature of ~800 ℃. The Mn-doped SrFeO3-δ enhances CO2 electrolysis with no performance degradation being observed even after high-temperature operation of 100 hours.
  • 加载中
    1. [1]

      Myung, J.; Neagu, D.; Miller, D. N.; Irvine, J. T. S. Switching on electrocatalytic activity in solid oxide cells. Nature 2016, 537, 528–531.  doi: 10.1038/nature19090

    2. [2]

      Zhou, Y.; Zhou, Z.; Song, Y.; Zhang, X.; Guan, F.; Lv, H.; Liu, Q.; Miao, S.; Wang, G.; Bao, X. Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. Nano Energy 2018, 50, 43–51.  doi: 10.1016/j.nanoen.2018.04.054

    3. [3]

      Vollestad, E.; Strandbakke, R.; Tarach, M.; Catalan-Martinez, D.; Fontaine, M. L.; Beeaff, D.; Clark, D. R.; Serra, J. M.; Norby, T. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nat. Mater. 2019, 18, 752–759.  doi: 10.1038/s41563-019-0388-2

    4. [4]

      Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S.; Liang, Y.; Feng, Z.; Wang, H. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415–8.  doi: 10.1038/s41467-018-02819-7

    5. [5]

      Zheng, Y.; Wang, J.; Yu, B.; Zhang, W.; Chen, J.; Qiao, J.; Zhang, J. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem. Soc. Rev. 2017, 46, 1427–1463.  doi: 10.1039/C6CS00403B

    6. [6]

      Ye, L.; Zhang, M.; Huang, P.; Guo, G.; Hong, M.; Li, C.; Irvine, J. T. S.; Xie, K. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 2017, 8, 14785–8.  doi: 10.1038/ncomms14785

    7. [7]

      Liu, S.; Liu, Q.; Luo, J. The excellence of La(Sr)Fe(Ni)O3 as an active and efficient cathode for direct CO2 electrochemical reduction at elevated temperatures. J. Mater. Chem. A 2017, 5, 2617–2680.

    8. [8]

      Meng, X.; Gong, X.; Yang, N.; Yin, Y.; Tan, X.; Ma, Z. F. Carbon-resistant Ni-YSZ/Cu-CeO2-YSZ dual-layer hollow fiber anode for micro tubular solid oxide fuel cell. Int. J. Hydrogen Energy 2014, 39, 3879–3886.  doi: 10.1016/j.ijhydene.2013.12.168

    9. [9]

      Laosiripojana, N.; Assabumrungrat, S. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: the possible use of these fuels in internal reforming SOFC. J. Power Sources 2007, 163, 943–951.  doi: 10.1016/j.jpowsour.2006.10.006

    10. [10]

      Hecht, E. S.; Gupta, G. K.; Zhu, H. Y.; Dean, A. M.; Kee, R. J.; Maier, L.; Deutschmann, O. Methane reforming kinetics within a Ni-YSZ SOFC anode support. Appl. Catal. A 2005, 295, 40–51.  doi: 10.1016/j.apcata.2005.08.003

    11. [11]

      Hauch, A.; Mogensen, M. Ni/YSZ electrode degradation studied by impedance spectroscopy effects of gas cleaning and current density. Solid State Ionics 2010, 181, 745–753.  doi: 10.1016/j.ssi.2010.04.001

    12. [12]

      Oskouyi, O. E.; Maghsoudipour, A.; Shahmiri, M.; Hasheminiasari, M. Preparation of YSZ electrolyte coating on conducting porous Ni-YSZ cermet by DC and pulsed constant voltage electrophoretic deposition process for SOFCs applications. J. Alloys Compd. 2019, 795, 361–369.  doi: 10.1016/j.jallcom.2019.04.334

    13. [13]

      Bidrawn, F.; Kim, G.; Corre, G.; Irvine, J. T. S.; Vohs, J. M.; Gorte, R. J. Efficient reduction of CO2 in a solid oxide electrolyzer. Electrochem. Solid State Lett. 2008, 11, B167–B170.  doi: 10.1149/1.2943664

    14. [14]

      Xie, K.; Umezawa, N.; Zhang, N.; Reunchan, P.; Zhang, Y.; Ye, J. Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy Environ. Sci. 2011, 4, 4211–4219.  doi: 10.1039/c1ee01594j

    15. [15]

      Wang, Y.; Liu, T.; Fang, S.; Chen, F. Syngas production on a symmetrical solid oxide H2O/CO2 coelectrolysis cell with Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 electrodes. J. Power Sources 2016, 305, 240–248.  doi: 10.1016/j.jpowsour.2015.11.097

    16. [16]

      Tsekouras, G.; Neagu, D.; Irvine, J. T. S. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci. 2013, 6, 256–266.  doi: 10.1039/C2EE22547F

    17. [17]

      Zhu, C.; Hou, S.; Hou, L.; Xie, K. Perovskite SrFeO3-δ decorated with Ni nanoparticles for high temperature carbon dioxide electrolysis. Int. J. Hydrogen Energy 2018, 43, 17040–17047.  doi: 10.1016/j.ijhydene.2018.07.148

    18. [18]

      Tian, Y.; Zhen, H.; Zhang, L.; Chi, B.; Li, J. Direct electrolysis of CO2 in symmetrical solid oxide electrolysis cell based on La0.6Sr0.4Fe0.8Ni0.2O3-δ electrode. J. Electrochem. Soc. 2018, 165, F17–F23.  doi: 10.1149/2.0351802jes

    19. [19]

      Zhang, L.; Zhu, X.; Cao, Z. Q.; Wang, Z.; Li, W.; Zhu, L.; Li, P.; Huang, X.; Lu, Z. Pr and Ti co-doped strontium ferrite as a novel hydrogen electrode for solid oxide electrolysis cell. Electrochim. Acta 2017, 232, 542–549.  doi: 10.1016/j.electacta.2017.02.168

    20. [20]

      Li, Z.; Ye, L. T.; Xie, K. Perovskite Sr0.9Fe0.9Zr0.1O3-δ: redox-stable structure, oxygen vacancy, electrical properties and steam electrolysis performance. Chin. J. Struct. Chem. 2018, 37, 65–74.

    21. [21]

      Gan, L.; Ye, L.; Ruan, C.; Chen, S.; Xie, K. Redox-reversible iron orthovanadate cathode for solid oxide steam electrolyzer. Adv. Sci. 2016, 3, 1500186–6.  doi: 10.1002/advs.201500186

    22. [22]

      Xiao, G.; Liu, Q.; Wang, S.; Komvokis, V. G.; Amiridis, M. D.; Heyden, A.; Ma, S.; Chen, F. Synthesis and characterization of Mo-doped SrFeO3-δ as cathode materials for solid oxide fuel cells. J. Power Sources 2012, 202, 63–69.  doi: 10.1016/j.jpowsour.2011.11.021

    23. [23]

      Lu, J.; Zhu, C.; Pan, C.; Lin, W.; Lemmon, J. P.; Chen, F.; Li, C.; Xie, K. Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser. Sci. Adv. 2018, 4, eaar5100–10.  doi: 10.1126/sciadv.aar5100

    24. [24]

      Zhu, C.; Hou, S.; Hu, X.; Lu, J.; Chen, F.; Xie, K. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer. Nat. Commun. 2019, 10, 1173–8.  doi: 10.1038/s41467-019-09083-3

    25. [25]

      Maslan, S.; Sira, M.; Skalicka, T.; Bergsten, T. Four-terminal pair digital sampling impedance bridge up to 1M Hz. IEEE Trans. Instrum. Meas. 2019, 68, 1860–1869.  doi: 10.1109/TIM.2019.2908649

    26. [26]

      Saher, S.; Naqash, S.; Boukamp, B. A.; Hu, B.; Xia, C.; Bouwmeester, H. J. M. Influence of ionic conductivity of the nano-particulate coating phase on oxygen surface exchange of La0.58Sr0.4Co0.2Fe0.8O3-δ. J. Mater. Chem. A 2017, 5, 4991–4999.  doi: 10.1039/C6TA10954C

    27. [27]

      Li, M.; Sun, Z.; Yang, W.; Hong, T.; Zhu, Z.; Zhang, Y.; Wu, X.; Xia, C. Mechanism for the enhanced oxygen reduction reaction of La0.6Sr0.4Co0.2Fe0.8O3-δ by strontium carbonate. Phys. Chem. Chem. Phys. 2017, 19, 503–509.  doi: 10.1039/C6CP06204K

    28. [28]

      Schmidt, M.; Campbell, S. J. Crystal and magnetic structures of Sr2Fe2O5 at elevated temperature. J. Solid State Chem. 2001, 156, 292–304.  doi: 10.1006/jssc.2000.8998

    29. [29]

      Nazzal, A. I.; Lee, V. Y.; Engler, E. M.; Jacowitz, R. D.; Tokura, Y.; Torrance, J. B. New procedure for determination of [Cu-O]+p charge and oxygen-content in high-TC copper oxides. Physica C 1988, 153, 1367–1368.

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    4. [4]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    5. [5]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    6. [6]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    7. [7]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    8. [8]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    9. [9]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    10. [10]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    11. [11]

      Jianjun Fang Kunchen Xie Yongli Song Kangyi Zhang Fei Xu Xiaoze Shi Ming Ren Minzhi Zhan Hai Lin Luyi Yang Shunning Li Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504

    12. [12]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    13. [13]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    14. [14]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    15. [15]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    16. [16]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    17. [17]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    18. [18]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    19. [19]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    20. [20]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

Metrics
  • PDF Downloads(7)
  • Abstract views(381)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return