Citation: Bi LUO, Chu ZHENG, Zhao-Guo HONG, Xiao-Feng WANG, He-Dong BIAN, Fu-Ping HUANG. Synthesis, Characterization and Antibacterial Activities Study of a Pharmaceutical Cocrystal of Artesunate and 4, 4΄-Bipyridine[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1633-1638. doi: 10.14102/j.cnki.0254-5861.2011-2668 shu

Synthesis, Characterization and Antibacterial Activities Study of a Pharmaceutical Cocrystal of Artesunate and 4, 4΄-Bipyridine

  • Corresponding author: Fu-Ping HUANG, huangfp2010@163.com
  • Received Date: 18 November 2019
    Accepted Date: 18 March 2020

    Fund Project: the National Natural Science Foundation of China 21861005the Foundation of Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources CMEMR2018-C15the Foundation of Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources CMEMR2016-A11

Figures(4)

  • We report here a cocrystal with artesunate as the active pharmaceutical ingredient (API) and a pharmaceutical intermediate 4, 4΄-bipyridine as the cocrystal former (CCF). The analysis of single-crystal X-ray diffraction demonstrates that the eutectic structural unit consists of two artesunate molecules and one 4, 4΄-bipyridine molecule with their ratio to be 2:1. The carboxyl group on artesunate acts as a donor, and the acceptor is N on 4, 4΄-bipyridine, forming an O–H···N hydrogen bond. The appearance of new diffraction peaks in the X-ray powder diffraction pattern also indicates the formation of new phases. The PXRD results indicated a pure phase for the synthesized sample. The cocrystal is slightly soluble in water. Antimicrobial activities showed that the cocrystal displayed effective inhibition of different bacteria.
  • 加载中
    1. [1]

      Aakeröy, C. B.; Fasulo, M.; Schultheiss, N.; Desper, J.; Moore, C. Structural competition between hydrogen bonds and halogen bonds. J. Am. Chem. Soc. 2007, 129, 13772–13773.  doi: 10.1021/ja073201c

    2. [2]

      Bao, L. P.; Wang, B. Z.; Yu, P. Y.; Huang, C. L.; Pan, C. W.; Fang, H. Y.; Akasaka, T.; Guldi, D. M.; Lu, X. Intermolecular packing and charge transfer in metallofullerene/porphyrin cocrystals. Chem. Commun. 2019, 55, 6018–6021.  doi: 10.1039/C9CC02095K

    3. [3]

      Aakeröy, C. B.; Forbes, S.; Desper, J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J. Am. Chem. Soc. 2009, 131, 17048–17049.  doi: 10.1021/ja907674c

    4. [4]

      Basavoju, S.; Boström, D.; Velaga, S. P. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Phar. Res. 2008, 25, 530–541.  doi: 10.1007/s11095-007-9394-1

    5. [5]

      Cuyckens, F. Mass spectrometry in drug metabolism and pharmacokinetics: current trends and future perspectives. Rap. Comm. Mas. Spe. 2019, 33, 90–95.  doi: 10.1002/rcm.8235

    6. [6]

      Blagden, N.; Matas, M.; Gavan, P. T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Dru. Del. Rev. 2007, 59, 617–630.  doi: 10.1016/j.addr.2007.05.011

    7. [7]

      Odani, T.; Matsumoto, A. Photodimerization of 2-pyridone in cocrystals with carboxylic acids using the stacking effect of naphthalene rings. Cryst. Eng. Comm. 2002, 4, 467–471.  doi: 10.1039/b205882k

    8. [8]

      Kama, A. B.; Jeanneau, E.; Sidibe, M.; Diop, C. A. K.; Gautier, R. Cocrystallization through the use of a salt: the case of thiourea with a new propanediammonium oxalate salt. J. Crys. Gro. 2019, 528, 125267.  doi: 10.1016/j.jcrysgro.2019.125267

    9. [9]

      Zhang, X. M.; Sun, F. X.; Zhang, T. T.; Jia, J. T.; Su, H. M.; Wang, C. H.; Zhu, G. S. Three pharmaceuticals cocrystals of adefovir: syntheses, structures and dissolution study. J. Mol. Struct. 2015, 1100, 395–400.  doi: 10.1016/j.molstruc.2015.07.033

    10. [10]

      Kaur, R.; Cavanagh, K. L.; Rodríguez-Hornedo, N.; Matzger, A. J. Multidrug cocrystal of anticonvulsants: influence of strong intermolecular interactions on physiochemical properties. Cryst. Growth Des. 2017, 17, 5012–5016.  doi: 10.1021/acs.cgd.7b00741

    11. [11]

      Yao, J.; Chen, J. M.; Xu, Y. B.; Lu, T. B. Enhancing the solubility of 6‑mercaptopurine by formation of ionic cocrystal with zinc trifluoromethanesulfonate: single-crystal-to-single-crystal transformation. Cryst. Growth Des. 2014, 14, 5019–5025.  doi: 10.1021/cg5005819

    12. [12]

      Qiao, N.; Li, M. Z.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: an overview. Int. J. Phar. 2011, 419, 1–11.  doi: 10.1016/j.ijpharm.2011.07.037

    13. [13]

      Izutsu, K.; Koide, T.; Takata, N.; Ikeda, Y.; Ono, M.; Inoue, M.; Fukami, T.; Yonemochi, E. Characterization and quality control of pharmaceutical cocrystals. Chem. Pharm. Bull. 2016, 64, 1421–1430.  doi: 10.1248/cpb.c16-00233

    14. [14]

      Aljohani, M.; Pallipurath, A. R.; McArdle, P.; Erxleben, A. A comprehensive cocrystal screening study of chlorothiazide. Cryst. Growth Des. 2017, 17, 5223–5232.  doi: 10.1021/acs.cgd.7b00745

    15. [15]

      Wang, L.; Luo, M.; Li, J. H.; Wang, J. M.; Zhang, H. L.; Deng, Z. W. Sweet theophylline cocrystal with two tautomers of acesulfame. Cryst. Growth Des. 2015, 15, 2574–2578.  doi: 10.1021/acs.cgd.5b00207

    16. [16]

      Almeida, A. C.; Torquetti, C.; Ferreira, P. O.; Fernandes, R. P.; Santos, E. C.; Kogawa, A. C.; Caires, F. J. Cocrystals of ciprofloxacin with nicotinic and isonicotinic acids: mechanochemical synthesis, characterization, thermal and solubility study. Thermochimica Acta. 2020, 685, 178346.  doi: 10.1016/j.tca.2019.178346

    17. [17]

      Aitipamula, S.; Chowa, P. S.; Tan, R. B. H. Trimorphs of a pharmaceutical cocrystal involving two active pharmaceutical ingredients: potential relevance to combination drugs. CrystEngComm. 2009, 11, 1823–1827.  doi: 10.1039/B904616J

    18. [18]

      Simon, F. The trouble with making combination drugs. Nat. Rev. Dru. Dis. 2006, 5, 881–882.  doi: 10.1038/nrd2188

    19. [19]

      Shah, H. J.; Subbaiah, G.; Patel, D. M.; Patel, C. N. In vitro-in vivo correlation of modified release dosage form of lamotrigine. Dru. Dispos. 2009, 30, 524–531.  doi: 10.1002/bdd.688

    20. [20]

      Stanton, M. K.; Kelly, R. C.; Colletti, A.; King, Y. H.; Langley, M.; Munson, E. J.; Peterson, M. L.; Roberts, J.; Wells, M. Improved pharmacokinetics of AMG 517 through co-crystallization part 1: comparison of two acids with corresponding amide co-crystals. Pharm. Sci. 2010, 99, 3769–3778.  doi: 10.1002/jps.22181

    21. [21]

      Gajda, M.; Nartowski, K. P.; Pluta, J.; Karolewicz, B. Tuning the cocrystal yield in matrix-assisted cocrystallisation via hot melt extrusion: a case of theophylline-nicotinamide cocrystal. Int. J. Phar. 2019, 569, 118579.  doi: 10.1016/j.ijpharm.2019.118579

    22. [22]

      Hariprasad, V. M.; Nechipadappu, S. K.; Trivedi, D. R. Cocrystals of ethenzamide: study of structural and physicochemical properties. Cryst. Growth Des. 2016, 16, 4473–4481.  doi: 10.1021/acs.cgd.6b00606

    23. [23]

      Zheng, K.; Li, A.; Wu, W. W.; Qian, S. S.; Liu, B. H.; Pang, Q. X. Preparation, characterization, in vitro and in vivo evaluation of metronidazoleegallic acid cocrystal: a combined experimental and theoretical investigation. J. Mol. Struct. 2019, 1197, 727–735.  doi: 10.1016/j.molstruc.2019.07.102

    24. [24]

      Bruker. APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI (2009).

    25. [25]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3.

    26. [26]

      Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., A, Found. Crystallogr. 2008, 64, 112.  doi: 10.1107/S0108767307043930

    27. [27]

      Xia, C. K.; Min, Y. Y.; Yang, K.; Sun, W.; Jiang, D. L.; Chen, M. Syntheses, crystal structures and properties of three novel silver-organic frameworks assembled from 1, 2, 3, 5-benzenetetracarboxylic acid based on argentophilic interactions. Cryst. Growth Des. 2018, 18, 1978–1986.  doi: 10.1021/acs.cgd.7b01319

    28. [28]

      Singh, K.; Barwa, M. S.; Tyagi, P. Synthesis and characterization of cobalt(II), nickel(II), copper(II)and zinc(II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1, 2, 4-triazine. Eur. J. Med. Chem. 2007, 42, 394–402.  doi: 10.1016/j.ejmech.2006.10.016

    29. [29]

      Jiang, Y.; Zhu, C. F.; Zheng, Z.; He, J. B.; Wang, Y. Synthesis, characterization and antibacterial activity of a biocompatible silver complex based on 2, 20-bipyridine and 5-sulfoisophthalate. Inorg. Chim. Acta 2016, 451, 143–147.  doi: 10.1016/j.ica.2016.07.014

    30. [30]

      Shabbir, M.; Akhter, Z.; Ismail H.; Mirza, B. Synthetic bioactive novel ether based Schiff bases and their copper(II) complexes. J. Mol. Struct. 2017, 1146, 57–61.  doi: 10.1016/j.molstruc.2017.05.127

    31. [31]

      Song, Y.; Qin, R. X.; Pan, X. C.; Ouyang, Q.; Liu, T. Y.; Zhai, Z. X.; Chen, Y. C.; Li, B.; Zhou, H. Design of new antibacterial enhancers based on AcrB΄s structure and the evaluation of their antibacterial enhancement activity. J. Mol. Sci. 2016, 17, 1934.  doi: 10.3390/ijms17111934

    32. [32]

      Li, B.; Yao, Q.; Pan, X. C.; Wang, N.; Zhang, R.; Li, J.; Ding, G. F.; Liu, X.; Wu, C.; Ran, D. Z.; Zheng, J.; Zhou, H. Artesunate enhances the antibacterial effect of b-lactam antibiotics against escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system AcrAB-TolC. J. Antimicrob Chemother. 2011, 66, 769–777.  doi: 10.1093/jac/dkr017

  • 加载中
    1. [1]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    2. [2]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    3. [3]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    4. [4]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    5. [5]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    6. [6]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    7. [7]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

    8. [8]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    9. [9]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    10. [10]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    11. [11]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    12. [12]

      Hao SunShengke LiQian LiuMinzan ZuoXueqi TianKaiya WangXiao-Yu Hu . Supramolecular prodrug vesicles for selective antimicrobial therapy employing a chemo-photodynamic strategy. Chinese Chemical Letters, 2025, 36(3): 109999-. doi: 10.1016/j.cclet.2024.109999

    13. [13]

      Yunfen GaoLiying WangChufan ZhouYi ZhaoHai HuangJun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028

    14. [14]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    15. [15]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    16. [16]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    17. [17]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    18. [18]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    19. [19]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    20. [20]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

Metrics
  • PDF Downloads(1)
  • Abstract views(287)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return