Citation: Jian-Mei HU, Yong WANG. Synthesis and Characterization of the cis-Dicyanoiron(Ⅱ) Building Block and Its Interactions with Selected Metal Ions[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1714-1722. doi: 10.14102/j.cnki.0254-5861.2011-2666 shu

Synthesis and Characterization of the cis-Dicyanoiron(Ⅱ) Building Block and Its Interactions with Selected Metal Ions

  • Corresponding author: Yong WANG, wangyong198711@yahoo.com
  • Received Date: 9 November 2019
    Accepted Date: 13 February 2020

    Fund Project: the Science and Technology Research Project of Hubei Provincial Department of Education Q20194301the Cultivating Scientific Research Project of Jingchu University of Technology PY201901the Third Batch of Hubei Provincial Youth Talent Development Plan Project QNYC201901

Figures(13)

  • In this work, a cis-dicyanoiron(Ⅱ) building block, cis-Fe(bpy)2(CN)2 (1, bpy = 2,2΄-bipyridine), has been prepared and fully characterized by IR, electronic absorption spectra, elemental analysis, cyclic voltammetry and single-crystal X-ray diffraction analysis. The interactions of complex 1 with selected metal ions, such as Cu(Ⅱ), Fe(Ⅲ), Pb(Ⅱ), Fe(Ⅱ), Cr(Ⅲ), Cd(Ⅱ), Co(Ⅱ), Zn(Ⅱ), Ni(Ⅱ) and Mn(Ⅱ), were investigated employing electronic absorption spectroscopy. The electronic absorption spectroscopy indicates Cu(Ⅱ), Fe(Ⅲ), Cr(Ⅲ), Cd(Ⅱ), Co(Ⅱ), Zn(Ⅱ) and Ni(Ⅱ) ions steadily coordinate with 1 via cyanide, respectively. Fluorescent emission intensity of 1 increased upon the addition of Zn(Ⅱ) ion, quenched by adding ions Cu(Ⅱ), Fe(Ⅲ) and Pb(Ⅱ), and it was almost unchanged when adding the Fe(Ⅱ), Cr(Ⅲ), Cd(Ⅱ), Co(Ⅱ), Ni(Ⅱ) and Mn(Ⅱ) ions.
  • 加载中
    1. [1]

      Das, S.; Rissanen, K.; Sahoo, P. Rare crystal structure of open spirolactam ring along with the closed-ring form of a rhodamine derivative: sensing of Cu2+ ions from spinach. ACS Omega 2019, 4, 5270–5274.  doi: 10.1021/acsomega.9b00053

    2. [2]

      Zhang, C.; Yan, Y.; Pan, Q.; Sun, L.; He, H.; Liu, Y.; Liang, Z.; Li, J. A microporous lanthanum metal-organic framework as a bi-functional chemosensor for the detection of picric acid and Fe3+ ions. Dalton Trans. 2015, 44, 13340–13346.  doi: 10.1039/C5DT01065A

    3. [3]

      Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper homeostasis and neurodegenerative disorders (Alzheimer's, Prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem. Rev. 2006, 106, 1995–2044.  doi: 10.1021/cr040410w

    4. [4]

      Shabani, A. M. H.; Dadfarnia, S.; Dehghani, Z. On-line solid phase extraction system using 1,10-phenanthroline immobilized on surfactant coated alumina for the flame atomic absorption spectrometric determination of copper and cadmium. Talanta 2009, 79, 1066–1070.  doi: 10.1016/j.talanta.2009.02.008

    5. [5]

      Zhang, J. F.; Zhou, Y.; Yoon, J.; Kim, J. S. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem. Soc. Rev. 2011, 40, 3416–3429.  doi: 10.1039/c1cs15028f

    6. [6]

      Si, H.; Sheng, R.; Li, Q.; Feng, J.; Li, L.; Tang, B. Highly sensitive fluorescence imaging of Zn2+ and Cu2+ in living cells with signal amplification based on functional DNA self-assembly. Anal. Chem. 2018, 90, 8785–8792.  doi: 10.1021/acs.analchem.7b05268

    7. [7]

      Gabr, M. T.; Pigge, F. C. A fluorescent turn-on probe for cyanide anion detection based on an AIE active cobalt(Ⅱ) complex. Dalton Trans. 2018, 47, 2079–2085.  doi: 10.1039/C7DT04242F

    8. [8]

      Zhu, X. D.; Zhang, K.; Wang, Y.; Long, W. W.; Sa, R. J.; Liu, T. F.; Lü, J. Fluorescent metal-organic framework (MOF) as a highly sensitive and quickly responsive chemical sensor for the detection of antibiotics in simulated wastewater. Inorg. Chem. 2018, 57, 1060–1065.  doi: 10.1021/acs.inorgchem.7b02471

    9. [9]

      Griesbeck, S.; Michail, E.; Wang, C.; Ogasawara, H.; Lorenzen, S.; Gerstner, L.; Zang, T.; Nitsch, J.; Sato, Y.; Bertermann, R.; Taki, M.; Lambert, C.; Yamaguchi, S.; Marder, T. B. Tuning the π-bridge of quadrupolar triarylborane chromophores for one- and two-photon excited fluorescence imaging of lysosomes in live cells. Chem. Sci. 2019, 10, 5405–5422  doi: 10.1039/C9SC00793H

    10. [10]

      Bhalla, V.; Tejpal, R.; Kumar, M.; Puri, R. K.; Mahajan, R. K. Terphenyl based 'turn on΄fluorescent sensor for mercury. Tetra. Lett. 2009, 50, 2649–2652.  doi: 10.1016/j.tetlet.2009.03.110

    11. [11]

      Chorazy, S.; Wang, J.; Ohkoshi, S. I. Yellow to greenish-blue colour-tunable photoluminescence and 4f-centered slow magnetic relaxation in a cyanido-bridged Dy(4-hydroxypyridine)-Co layered material. Chem. Commun. 2016, 52, 10795–10798.  doi: 10.1039/C6CC05337H

    12. [12]

      Barthelmes, K.; Jäger, M.; Kübel, J.; Friebe, C.; Winter, A.; Wächtler, M.; Dietzek, B.; Schubert, U. S. Efficient energy transfer and metal coupling in cyanide-bridged heterodinuclear complexes based on (bipyridine)(terpyridine)ruthenium(Ⅱ) and (phenylpyridine)iridium(Ⅲ) complexes. Inorg. Chem. 2016, 55, 5152–5167.  doi: 10.1021/acs.inorgchem.5b02919

    13. [13]

      Büldt, L. A.; Guo, X.; Vogel, R.; Prescimone, A.; Wenger, O. S. A tris(diisocyanide)chromium(0) complex is a luminescent analog of [Fe(2, 2΄-bipyridine)3]2+. J. Am. Chem. Soc. 2017, 139, 985–992.  doi: 10.1021/jacs.6b11803

    14. [14]

      Comte, V.; Vahrenkamp, H. Cyanide bridged oligonuclear complexes containing CuCl and CuCl2. J. Organomet. Chem. 2001, 627, 153–158.  doi: 10.1016/S0022-328X(01)00739-2

    15. [15]

      Qin, Z. T.; Sheng, T. L.; Hu, S. M.; Xiang, S. C.; Fu, R. B.; Wang, X.; Shen, C. J.; Wu, X. T. Design, synthesis and crystal structure of two one-dimensional zigzag chain-like compounds. Chin. J. Struc. Chem. 2008, 27, 1013–1019.

    16. [16]

      Sheldrick, G. M. Program for X-ray Crystal Structure Refinement. University of Göttingen: Germany 2016.

    17. [17]

      Anderson, K. M.; Orpen, A. G. On the relative magnitudes of cis and trans influences in metal complexes. Chem. Commun. 2001, 2682–2683.

    18. [18]

      Ma, B. Q.; Sun, H. L.; Gao, S. Vertex-sharing water tape consisting of cyclic hexamers. Eur. J. Inorg. Chem. 2005, 2005, 3902–3906.  doi: 10.1002/ejic.200500374

    19. [19]

      Wang, Y.; Ma, X.; Hu, S. M.; Wen, Y. H.; Xue, Z. Z.; Zhu, X. Q.; Zhang, X. D.; Sheng, T. L.; Wu, X. T. Syntheses, crystal structures, MMCT and magnetic properties of four one-dimensional cyanide-bridged complexes comprised of M-CN-Fe (M = Fe, Ru, Os). Dalton Trans. 2014, 43, 17453–17462.  doi: 10.1039/C4DT02272F

    20. [20]

      Hunter, C. A.; Sanders, J. K. M. The nature of. π-π interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534.  doi: 10.1021/ja00170a016

    21. [21]

      Główka, M. L.; Martynowski, D.; Kozłowska, K. Stacking of six-membered aromatic rings in crystals. J. Mol. Struct. 1999, 474, 81–89.  doi: 10.1016/S0022-2860(98)00562-6

    22. [22]

      Wang, Y.; Ma, X.; Hu, S. M.; Xue, Z. Z.; Wen, Y. H.; Sheng, T. L.; Wu, X. T. Syntheses, crystal structures, spectroscopy, electrochemical and magnetic properties of four cyanido-bridged M–Mn (M = Fe, Ru, Os) complexes. J. Coord. Chem. 2015, 68, 55–70.  doi: 10.1080/00958972.2014.981537

    23. [23]

      Bryant, G.; Fergusson, J.; Powell, H. Charge-transfer and intraligand electronic spectra of bipyridyl complexes of iron, ruthenium, and osmium. I. Bivalent complexes. Aust. J. Chem. 1971, 24, 257–273.  doi: 10.1071/CH9710257

    24. [24]

      Schilte, A. A. Proton affinities of some cyanide and aromatic diimine complexes of iron, ruthenium and osmium. J. Am. Chem. Soc. 1963, 85, 904–908.  doi: 10.1021/ja00890a016

    25. [25]

      Schilt, A. A. Unusual proton affinities of some mixed ligand iron(Ⅱ) complexes. J. Am. Chem. Soc. 1960, 82, 5779–5783.  doi: 10.1021/ja01507a004

    26. [26]

      Qiao, N.; Wei, N. N.; Zhang, J. N.; Hao, C. The dual-luminescence mechanism of the ESIPT chemosensor tetrasubstituted imidazole core compound: a TDDFT study. New J. Chem. 2018, 42, 11804–11810.  doi: 10.1039/C8NJ01162A

    27. [27]

      Ernsting, N. P.; Breffke, J.; Vorobyev, D. Y.; Duncan, D. A.; Pfeffer, I. Sub-picosecond. fluorescence evolution of amino-cyano-stilbenes in methanol: polar solvation obeys continuum theory without evidence of twisting. Phys. Chem. Chem. Phys. 2008, 10, 2043–2049.  doi: 10.1039/b717541h

  • 加载中
    1. [1]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    2. [2]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    3. [3]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    4. [4]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    5. [5]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    6. [6]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    7. [7]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    8. [8]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    9. [9]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    10. [10]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    11. [11]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    12. [12]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    13. [13]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    14. [14]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    15. [15]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    16. [16]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    17. [17]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    18. [18]

      Yunlong LiXinyu ZhangShuang LiuChunsheng LiQiang WangJin YeYong LuJiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501

    19. [19]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    20. [20]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

Metrics
  • PDF Downloads(3)
  • Abstract views(297)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return