Citation: Ling-Ling SONG, Dong-Yue HAN, Ni YAO, Jun GUAN. Investigation on Structure and Bonding of As4S4 Isomers[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1585-1593. doi: 10.14102/j.cnki.0254-5861.2011-2663 shu

Investigation on Structure and Bonding of As4S4 Isomers

  • Corresponding author: Jun GUAN, timeguan@bucm.edu.cn
  • Received Date: 12 November 2019
    Accepted Date: 27 March 2020

    Fund Project: the National Natural Science Foundation of China 81403069the Research and Development Fund of Beijing University of Chinese Medicine 2020072120050

Figures(3)

  • Mineral medicine, especially those containing heavy metals, is one of the characteristics of traditional Chinese medicine. A famous mineral medicine, realgar, containing heavy metal arsenic with a chemical formula of As4S4, has the function of detoxification, killing bacteria and viruses, and eliminating dampness and phlegm. Different As4S4 isomers are likely to have different drug effects and pharmacological actions. Therefore, it is of great scientific significance to find more stable As4S4 isomers. In view of this, ab initio molecular orbital theory and density functional theory (DFT) have been used to study ten isomers of As4S4 at the B3LYP/6-31G*, B3LYP/6-311+G*, B3LYP/6-311+G(3df, 2p) and MP2/(6-311+G*, LanL2MB) levels of theory. In addition to the two isomers having been studied previously, eight new isomers were investigated in the present paper. All the ten As4S4 isomers were proved to be true local minima on their potential energy surfaces. The calculated NICS values and molecular orbital analyses showed that, the D2d symmetric As4S4, isomer 1, may be σ-aromatic. The study proves that ten As4S4 isomers are stable thermodynamically, and are highly desirable for the future theoretical study of realgar.
  • 加载中
    1. [1]

      Chern, G. C.; Lauks, I. Spin-coated amorphous chalcogenide films. J. Appl. Phys. 1982, 53, 6979−6982.  doi: 10.1063/1.330043

    2. [2]

      Zank, G. A.; Rauchfuss, T. B.; Wilson, S. R.; Rheingold, A. L. Synthesis and structures of molecular sulfo salts (CH3C5H4)3Ti2OAsS3, [Mo2O2As4S14]2-, and [Mo4O4As4S14]4-. J. Am. Chem. Soc. 1984, 106, 7621−7623.  doi: 10.1021/ja00336a052

    3. [3]

      Bernal, I.; Brunner, H.; Meier, W.; Pfisterer, H.; Wachter, J.; Ziegler, M. L. Ligand extrusion from the As4S4-Cage by [C5Me5(CO)2Mo]2: formation of (C5Me5)2Mo2(CO)4(μ, η2-As2), C5Me5(CO)2Mo(η3-As3), and (C5Me5)2Mo2As2S3. Angew. Chem. Int. Ed. Engl. 1984, 23, 438−439.  doi: 10.1002/anie.198404381

    4. [4]

      Di Vaira, M.; Mani, F.; Moneti, S.; Perruzini, M.; Sacconi, L.; Stoppioni, P. Synthesis and characterization of dinuclear metal complexes with the P2S and As2S heteroatomic inorganic rings as bridging units. Crystal and molecular structure of [(triphos)Rh(As2S)Rh(triphos)](BPh4)2⋅2(CH3)2CO (triphos = 1, 1, 1-tris((diphenylphosphino)methyl)ethane). Inorg. Chem. 1985, 24, 2230−2236.  doi: 10.1021/ic00208a023

    5. [5]

      Brunner, H.; Kauermann, H.; Klement, U.; Wachter, J.; Zahn, T.; Ziegler, M. L. Synthesis of [(C5Me5)2Mo2XS3Co(CO)2] clusters (X = P, As) and structural characterization of a μ2, η2-AsS ligand. Angew. Chem. Int. Ed. Engl. 1985, 24, 132−133.  doi: 10.1002/anie.198501321

    6. [6]

      Brunner, H.; Kauermann, H.; Nuber, B.; Wachter, J.; Ziegler, M. L. Complex-induced fragmentation of As4S4: stabilization of an As2S3 ligand. Angew. Chem. Int. Ed. Engl. 1986, 25, 557−558.  doi: 10.1002/anie.198605571

    7. [7]

      Zhou, A. X.; Yao, B. S.; Zheng, J. F. Therapeutic efficacy of Qinghuang San in the treatment of chronic myeloid leukemia, 25 cases. Chin. J. Integr. Med. 1981, 1, 16−18.

    8. [8]

      Zeng, Z. L. Reflection on the treatment of leukemia from arsenic trioxide. Shanghai J. Tradit. Chin. Med. 1998, 2−3.

    9. [9]

      Lu, D. P.; Qiu, J. Y.; Jiang, B.; Wang, Q.; Liu, K. Y.; Liu, Y. R.; Chen, S. S. Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukemia: a pilot report. Blood 2002, 99, 3136−3143.  doi: 10.1182/blood.V99.9.3136

    10. [10]

      Wang, L.; Zhou, G. B.; Liu, P.; Song, J. H.; Liang, Y.; Yan, X. J.; Xu, F.; Wang, B. S.; Mao, J. H.; Shen, Z. X.; Chen, S. J.; Chen, Z. Dissection of mechanisms of Chinese medicinal formula realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. P. Natl. Acad. Sci. USA 2008, 105, 4826−4831.  doi: 10.1073/pnas.0712365105

    11. [11]

      Hu, X. M.; Liu, F.; Ma, R. Application and assessment of Chinese arsenic drugs in treating malignant hematopathy in China. Chin. J. Integr. Med. 2010, 16, 368−377.  doi: 10.1007/s11655-010-0506-0

    12. [12]

      Wu, J.; Shao, Y.; Liu, J.; Chen, G.; Ho, P. C. The medicinal use of realgar (As4S4) and its recent development as an anticancer agent. J. Ethnopharmacol. 2011, 135, 595−602.  doi: 10.1016/j.jep.2011.03.071

    13. [13]

      Cheng, Y. X.; Liu, R.; Wang, Q.; Li, B. S.; Xu, X. X.; Hu, M.; Chen, L.; Fu, Q.; Pu, D. M.; Hong, L. Realgar-induced apoptosis of cervical cancer cell line siha via cytochrome C release and caspase-3 and caspase-9 activation. Chin. J. Integr. Med. 2012, 18, 359−365.  doi: 10.1007/s11655-011-0697-z

    14. [14]

      Zhang, L.; Kim, S.; Ding, W.; Tong, Y.; Zhang, X.; Pan, M.; Chen, S. Arsenic sulfide inhibits cell migration and invasion of gastric cancer in vitro and in vivo. Drug Des. Dev. Ther. 2015, 9, 5579−5590.

    15. [15]

      Song, P.; Chen, P.; Wang, D.; Wu, Z.; Gao, Q.; Wang, A.; Zhu, R.; Wang, Y.; Wang, X.; Zhao, L.; Duan, Z.; Zhu, S.; Cui, P.; Li, Y.; Li, H. Realgar transforming solution displays anticancer potential against human hepatocellular carcinoma HepG2 cells by inducing ROS. Int. J. Oncol. 2017, 50, 660−670.  doi: 10.3892/ijo.2016.3831

    16. [16]

      Wang, G.; Zhang, T.; Sun, W.; Wang, H.; Yin, F.; Wang, Z.; Zuo, D.; Sun, M.; Zhou, Z.; Lin, B.; Xu, J.; Hua, Y.; Li, H.; Cai, Z. Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radical Bio. Med. 2017, 106, 24−37.  doi: 10.1016/j.freeradbiomed.2017.02.015

    17. [17]

      Zhao, Y.; Yuan, B.; Onda, K.; Sugiyama, K.; Tanaka, S.; Takagi, N.; Hirano, T. Anticancer efficacies of arsenic disulfide through apoptosis induction, cell cycle arrest, and pro-survival signal inhibition in human breast cancer cells. Am. J. Cancer Res. 2018, 8, 366−386.

    18. [18]

      Buerger, M. J. The unit cell and space group of realgar. Am. Mineral. 1935, 20, 36−43.

    19. [19]

      Ito, T.; Morimoto, N.; Sadanaga, R. The crystal structure of realgar. Acta Crystallogr. 1952, 5, 775−782.  doi: 10.1107/S0365110X52002112

    20. [20]

      Forneris, R. The infrared and Raman spectra of realgar and orpiment. Am. Mineral. 1969, 54, 1062−1074.

    21. [21]

      Porter, E. J.; Sheldrick, G. M. Crystal structure of a new crystalline modification of tetra-arsenic tetrasulphide (2, 4, 6, 8-tetrathia-1, 3, 5, 7-tetra-arsatricyclo [3, 3, 0, 03, 7]-octane). J. Chem. Soc. Dalton. Trans. 1972, 13, 1347−1349.

    22. [22]

      Lu, C. S.; Donohue, J. An electron diffraction investigation of sulfur nitride, arsenic disulfide (realgar), arsenic trisulfide (orpiment) and sulfur. J. Am. Chem. Soc. 1944, 66, 818−827.  doi: 10.1021/ja01233a049

    23. [23]

      Hall, H. T. The System Ag-Sb-S, Ag-As-S, and Ag-Bi-S: Phase Relations and Mineralogical Sigrrificance. Ph. D. Thesis, Brown University 1966.

    24. [24]

      Roland, G. W. Concerning the α-AsS realgar inversion. Can. Mineral. 1972, 11, 520−525.

    25. [25]

      Roberts, A. C.; Ansell, H. G.; Bonardi, M. Pararealgar, a new polymorph of AsS, from British Columbia. Can. Mineral. 1980, 18, 525−527.

    26. [26]

      Bonazzi, P.; Menchetti, S.; Pratesi, G. The crystal structure of pararealgar, As4S4. Am. Mineral. 1995, 80, 400−403.  doi: 10.2138/am-1995-3-422

    27. [27]

      Kutoglu, V. A. Darstellung und kristallstruktur einer neuen isomeren form von As4S4. Z. Anorg. Allg. Chem. 1976, 419, 176−184.  doi: 10.1002/zaac.19764190211

    28. [28]

      Douglass, D. L.; Shing, C.; Wang, G. The light-induced alteration of realgar to pararealgar. Am. Mineral. 1992, 77, 1266−1274.

    29. [29]

      Bonazzi, P.; Bindi, L.; Pratest, G.; Menchetti, S. Light-induced changes in molecular arsenic sulfides: state of the art and new evidence by single-crystal χ-ray diffraction. Am. Mineral. 2006, 91, 1323−1330.  doi: 10.2138/am.2006.2165

    30. [30]

      Tian, J. G.; Lü, Y.; Zhou, J. G.; Gao, T. B.; Zheng, Q. T.; Chen, D. C. The powder χ-ray diffraction analysis of mineral drug realgar with its associated minerals. Chin. J. Pharm. Anal. 1998, 18, 86−89.

    31. [31]

      Han, M.; Sheng, Z. H.; Zhong, X. M. Identification of Fourier finger pattern on realgar and orpiment by XRD. J. Zhejiang Chin. Med. Univ. 2010, 34, 271−272.

    32. [32]

      Guan, J.; Wang, Y.; Tie, B. R.; Qiao, Y. J. Main constituents of Xionghuang China (realgar). J. Beijing Univ. Tradit. Chin. Med. 2010, 33, 623−627.

    33. [33]

      Zhang, Z. J.; Zhou, Q.; Wei, J. Z.; Zhang, Y. L.; Sun, S. Q.; Huang, L. Q.; Yuan, S. T. Validation of the crystal structure of medicinal realgar in China. Spectrosc. Spect. Anal. 2011, 31, 291−296.

    34. [34]

      Cao, S.; Xia, J.; Yang, X. H.; Wang, X. M.; Wang, K.; Ji, S. Comparative study on crude and processed realgar by χ-ray diffraction. Chin. Tradit. Patent. Med. 2012, 34, 1136−1139.

    35. [35]

      Song, L. L.; Han, D. Y.; Lin, R. C.; Huang, J. M.; Guan, J. Research progress in mineral Chinese medicine realgar. China J. Chin. Mater. Med. 2019, 44, 433−440.

    36. [36]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revis. D. 1, Gaussian, Inc., Wallingford CT 2009.

    37. [37]

      Babić, D.; Rabii, S. Erratum: Self-consistent-field χ α scattered-wave calculation of the electronic structure of arsenic chalcogenide molecules. Phys. Rev. B 1988, 38, 10490−10498.  doi: 10.1103/PhysRevB.38.10490

    38. [38]

      Babić, D.; Rabii, S. Structural and electronic properties of arsenic chalcogenide molecules. Phys. Rev. B 1989, 39, 10831−10838.  doi: 10.1103/PhysRevB.39.10831

    39. [39]

      Banerjee, A.; Jensen, J. O.; Jensen, J. L. A theoretical study of As4S4: bonding, vibrational analysis and infrared and Raman spectra. J. Mol. Struct. (Theochem. ) 2003, 626, 63−75.  doi: 10.1016/S0166-1280(02)00746-7

    40. [40]

      Muniz-Miranda, M.; Sbrana, G.; Bonazzi, P.; Menchetti, S.; Pratesi, G. Spectroscopic investigation and normal mode analysis of As4S4 polymorphs. Spectrochim Acta. A 1996, 52, 1391−1401.  doi: 10.1016/0584-8539(96)01698-4

    41. [41]

      Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899−926.  doi: 10.1021/cr00088a005

    42. [42]

      Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317−6318.  doi: 10.1021/ja960582d

    43. [43]

      Schleyer, P. V. R.; Najafian, K.; Kiran, B.; Jiao, H. Are oxocarbon dianions aromatic?. J. Org. Chem. 2000, 65, 426−431.  doi: 10.1021/jo991267n

    44. [44]

      Gunasekaran, S.; Balaji, R. A.; Kumeresan, S.; Anand, G.; Srinivasan, S. Experimental and theoretical investigations of spectroscopic properties of N-acetyl-5-methoxytryptamine. Can. J. Anal. Sci. Spectrosc. 2008, 53, 149−160.

    45. [45]

      Pearson, R. G. Absolute electronegativity and hardness: applications to organic chemistry. J. Org. Chem. 1989, 54, 1423−1430.  doi: 10.1021/jo00267a034

    46. [46]

      Schaftenaar, G. MOLDEN3. 7, CAOS/CAMM Center. The Netherlands 1998.

  • 加载中
    1. [1]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    4. [4]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    5. [5]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    6. [6]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    7. [7]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    8. [8]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    9. [9]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    10. [10]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    11. [11]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    12. [12]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    15. [15]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    16. [16]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    17. [17]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    18. [18]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    19. [19]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(6)
  • Abstract views(413)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return