Citation: Wen-Guang LIU, Dan-Feng HONG, Chang-Cheng XI, Chao MA, Fei XIONG, Shu-Ping ZHANG. 3D-QSAR Analysis of a Series of Dihydroquinolizinone Derivatives as a Hepatitis B Virus Expression Inhibitor[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1615-1626. doi: 10.14102/j.cnki.0254-5861.2011-2661 shu

3D-QSAR Analysis of a Series of Dihydroquinolizinone Derivatives as a Hepatitis B Virus Expression Inhibitor

  • Corresponding author: Fei XIONG, fxiong@usst.edu.cn
  • Received Date: 7 November 2019
    Accepted Date: 16 December 2019

    Fund Project: the National Natural Science Foundation of China 81172918the National Natural Science Foundation of China 51707122

Figures(4)

  • In this study, we explored a three-dimensional quantitative structure-activity relationship (3D-QSAR) model of 63 HBV viral gene expression inhibitors containing dihydroquinolizinones. Two high predictive QSAR models have been built, including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The internal validation parameter (CoMFA, q2 = 0.701, r2 = 0.999; CoMSIA, q2 = 0.721, r2 = 0.998) and external validation parameter (CoMFA, rpred = 0.9992; CoMSIA, rpred = 0.9992) indicated that the models have good predictive abilities and significant statistical reliability. We designed several molecules with potentially higher predicted activity on the basis of the result of the models. This work might provide useful information to design novel HBV viral gene expression inhibitors.
  • 加载中
    1. [1]

      Zhang, H. H.; Li, H.; Yang, Y. X.; Li, S. L.; Ren, H.; Zhang, D. Z.; Hu, H. D. Differential regulation of host genes including hepatic fatty acid synthase in HBV-transgenic mice. J. Proteome Res. 2013, 12, 2967−2979.  doi: 10.1021/pr400247f

    2. [2]

      Mueller, A, H.; Wildum, S.; Luangsay, S.; Walther, J.; Lopez, A.; Tropberger, P.; Ottaviani, G.; Lu, W. Z.; Parrott, N. J.; Zhang, J. D.; Schmucki, R.; Racek, T.; Hoflack, J. C.; Kueng, E.; Point, F.; Zhou, X.; Steiner, G.; Lütgehetmann, M.; Rapp, G.; Volz, T.; Dandri, M.; Yang, S.; Young, J. A. T.; Javanbakht, H. Novel orally available small molecule that inhibits hepatitis B virus expression. J. Hepatol. 2017, 68, 412−420.

    3. [3]

      Thi, E. P.; Dhillon, A. P.; Ardzinski, A.; Bidirici-Ertekin, L.; Cobarrubias, K. D.; Cuconati, A.; Kondratowicz, A. S.; Kwak, K.; Li, A. H. L.; Miller, A.; Pasetka, C.; Pei, L.; Phelps, J. R.; Snead, N. M.; Wang, X. H.; Ye, X.; Sofia, M. J.; Lee, A. C. H. ARB-1740, a RNA interference therapeutic for chronic hepatitis B infection. ACS Infect. Dis. 2019, 5, 725−737.  doi: 10.1021/acsinfecdis.8b00191

    4. [4]

      Qiu, Z. X.; Lin, X. F.; Zhou, M. W.; Liu, F. F.; Zhu, W.; Chen, W. M.; Zhang, W. X.; Guo, L.; Liu, H. X.; Wu, G. L.; Huang, M. W.; Jiang, M.; Xu, Z. H.; Zhou, Z.; Qin, N.; Ren, S.; Qiu, H. X.; Zhong, S.; Zhang, Y. X.; Zhang, Y.; Wu, X. Y.; Shi, L. P.; Shen, F.; Mao, Y.; Zhou, X.; Yang, W. G.; Wu, J. Z.; Yang, G.; Mayweg, A. V.; Shen, H. C.; Tang, G. Z. Design and synthesis of orally bioavailable 4-methyl heteroaryldihydropyrimidine based hepatitis B virus (HBV) capsid inhibitors. J. Med. Chem. 2016, 59, 7651−7666.  doi: 10.1021/acs.jmedchem.6b00879

    5. [5]

      Stanaway, J. D.; Flaxman, A. D.; Naghavi, M.; Fitzmaurice, C.; Vos, T.; Abubakar, I.; Abu-Raddad, L. J.; Assadi, R.; Bhala, N.; Cowie, B.; Forouzanfour, M. H.; Groeger, J.; Hanafiah, K. M.; Jacobsen, K. H.; James, S. L.; MacLachlan, J.; Malekzadeh, R.; Martin, N. K.; Mokdad, A. A.; Mokdad, A. H.; Murray, C. J. L.; Plass, D.; Rana, S.; Rein, D. B.; Richardus, J. H.; Sanabria, J.; Saylan, M.; Shahraz, S.; So, S.; Vlassov, V. V.; Weiderpass, E.; Wiersma, S. T.; Younis, M.; Yu, C. H.; Zaki, M. E. S.; Cooke, G. S. The global burden of viral hepatitis from 1990 to 2013: findings from the global burden of disease study 2013. Lancet. 2016, 388, 1081−88.  doi: 10.1016/S0140-6736(16)30579-7

    6. [6]

      Zhang, P. H.; Zhai, S.; Chang, J. H.; Guo, J. T. In vitro anti-hepatitis B virus activity of 2΄, 3΄-dideoxyguanosine. Virologica Sinica 2018, 33, 538−544.  doi: 10.1007/s12250-018-0065-7

    7. [7]

      Yang, J.; Ma, M.; Wang, X. D.; Jiang, X. J.; Zhang, Y. Y.; Yang, W. Q.; Li, Z. C.; Wang, X. H.; Yang, B.; Ma, M. L. Synthesis and quantitative structure activity relationships study for phenylpropenamide derivatives as inhibitors of hepatitis B virus replication. Eur. J. Med. Chem. 2015, 99, 82−91.  doi: 10.1016/j.ejmech.2015.05.032

    8. [8]

      Marcellin, P.; Ahn, S. H.; Ma, X. L.; Caruntu, F. A.; Tak, W. Y.; Elkashab, M.; Chuang, W. L.; Lim, S. G.; Tabak, F.; Mehta, R.; Petersen, J.; Foster, G. R.; Lou, L.; Martins, E. B.; Dinh, P.; Lin, L.; Corsa, A.; Charuworn, P.; Subramanian, G. M.; Reiser, H.; Reesink, H. W.; Fung, S.; Strasser, S. I.; Trinh, H.; Buti, M.; Gaeta, G. B.; Hui, A. J.; Papatheodoridis, G.; Flisiak, R.; Chan, H. L. Y. Combination of tenofovir disoproxil fumarate and peginterferon α-2a increases loss of hepatitis B surface antigen in patients with chronic hepatitis B. Gastroenterology 2016, 150, 134−144.  doi: 10.1053/j.gastro.2015.09.043

    9. [9]

      Zhou, T. L.; Block, T.; Liu, F.; Kondratowicz, A. S.; Sun, L. R.; Rawat, S.; Branson, J.; Guo, F.; Steuer, H. M.; Liang, H. Y.; Bailey, L.; Moore, C.; Wang, X. H.; Cuconatti, A.; Gao, M.; Lee, A. C. H.; Harasym, T.; Chiu, T.; Gotchev, D.; Dorsey, B.; Rijnbrand, R.; Sofia, M. J. HBsAg mRNA degradation induced by a dihydroquinolizinone compound depends on the HBV posttranscriptional regulatory element. Antiviral Res. 2018, 149, 191−201.  doi: 10.1016/j.antiviral.2017.11.009

    10. [10]

      Yang, L.; Liu, F. F.; Tong, X. K.; Hoffmann, D.; Zuo, J. P.; Lu, M. J. Treatment of chronic hepatitis B virus infection using small molecule modulators of nucleocapsid assembly: recent advances and perspectives. ACS Infect. Dis. 2019, 5, 713−724.  doi: 10.1021/acsinfecdis.8b00337

    11. [11]

      Mueller, H.; Lopez, A.; Tropberger, P.; Wildum, S.; Schmaler, J.; Pedersen, L.; Han, X. C.; Wang, Y. G.; Ottosen, S.; Yang, S.; Young, J. A. T.; Javanbakht, H. PAPD5/7 are host factors that are required for hepatitis B virus RNA stabilization. Hepatology 2019, 69, 1398−1411.  doi: 10.1002/hep.30329

    12. [12]

      Prescott, N. A.; Bram, Y.; Schwartz, R. E.; David, Y. Targeting hepatitis B virus covalently closed circular DNA and hepatitis B virus X protein: recent advances and new approaches. ACS Infect. Dis. 2019, 5, 1657−1667.  doi: 10.1021/acsinfecdis.9b00249

    13. [13]

      Ko, C.; Chakraborty, A.; Chou, W. M.; Hasreiter, J.; Wettengel, J. M.; Stadler, D.; Bester, R.; Asen, T.; Zhang, K.; Wisskirchen, K.; McKeating, J. A.; Ryu, W. S.; Protzer, U. Hepatitis B virus genome recycling and de novo secondary infection events maintain stable cccDNA levels. J. Hepatol. 2018, 69, 1231−1241.  doi: 10.1016/j.jhep.2018.08.012

    14. [14]

      Zoulim, F. Inhibition of hepatitis B virus gene expression: a step towards functional cure. J. Hepatol. 2018, 68, 386−388.  doi: 10.1016/j.jhep.2017.11.036

    15. [15]

      Han, X. C.; Zhou, C. G.; Jiang, M.; Wang, Y. G.; Wang, J. H.; Cheng, Z. L.; Wang, M.; Liu, Y. Q.; Liang, C. G.; Wang, J. P.; Wang, Z. G.; Weikert, R.; Lv, W. Z.; Xie, J. X.; Yu, X.; Zhou, X.; Luangsay, S.; Shen, H. C.; Mayweg, A. V.; Javanbakht, H.; Yang, S. Discovery of RG7834: the first-in-class selective and orally available small molecule hepatitis B virus expression inhibitor with novel mechanism of action. J. Med. Chem. 2018, 61, 10619−10634.  doi: 10.1021/acs.jmedchem.8b01245

    16. [16]

      Tsai, K. C.; Chen, Y. C.; Hsiao, N. W.; Wang, C. L.; Lin, C. L.; Lee, Y. C.; Li, M. Y.; Wang, B. H. A comparison of different electrostatic potentials on prediction accuracy in CoMFA and CoMSIA studies. Eur. J. Med. Chem. 2010, 45, 1544−1551.  doi: 10.1016/j.ejmech.2009.12.063

    17. [17]

      Tu, J.; Li, J. J.; Shan, Z. J.; Zhai, H. L. Exploring the binding mechanism of heteroaryldihydropyrimidines and hepatitis B virus capsid combined 3D-QSAR and molecular dynamics. Antiviral Res. 2017, 137, 151−164.  doi: 10.1016/j.antiviral.2016.11.026

    18. [18]

      Chai, H. F.; Liang, X. X.; Li, L.; Zhao, C. S.; Gong, P.; Liang, Z. J.; Zhu, W. L.; Jiang, H, L.; Luo, C. Identification of novel 5-hydroxy-1H-indole-3-carboxylates with anti-HBV activities based on 3D QSAR studies. J. Mol. Model. 2011, 17, 1831−1840.  doi: 10.1007/s00894-010-0873-7

    19. [19]

      Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometrics Intell. Lab. Syst. 2001, 58, 109−130.  doi: 10.1016/S0169-7439(01)00155-1

    20. [20]

      Kubinyi, H.; Hamprecht, F. A.; Mietzner, T. Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. J. Med. Chem. 1998, 41, 2553−2564.  doi: 10.1021/jm970732a

    21. [21]

      Yang, J.; Ma, M.; Wang, X. D.; Jiang, X. J.; Zhang, Y. Y.; Yang, W. Q.; Li, Z. C.; Wang, X. H.; Yang, B.; Ma, M. L. Synthesis and quantitative structure-activity relationships study for phenylpropenamide derivatives as inhibitors of hepatitis B virus replication. Eur. J. Med. Chem. 2015, 99, 82−91.  doi: 10.1016/j.ejmech.2015.05.032

    22. [22]

      Benigni, R.; Bossa, C. Predictivity of QSAR. J. Chem. Inf. Model. 2008, 48, 971−980.  doi: 10.1021/ci8000088

  • 加载中
    1. [1]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    4. [4]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    5. [5]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    6. [6]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    7. [7]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    8. [8]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    9. [9]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    10. [10]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    11. [11]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    12. [12]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    13. [13]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    16. [16]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    17. [17]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    18. [18]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    19. [19]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    20. [20]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

Metrics
  • PDF Downloads(4)
  • Abstract views(357)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return