Citation: Meng-Yao ZHANG, Ying-Ying ZHANG, Hui-Xin ZHANG, Shen WANG, Ya-Qi WANG, Yong-Fei ZENG, Gui-Yan LIU. Synthesis, Crystal Structure and Catalytic Activity Palladium(Ⅱ) Complexes Containing Bulky Azole Ligands[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1669-1674. doi: 10.14102/j.cnki.0254-5861.2011-2660 shu

Synthesis, Crystal Structure and Catalytic Activity Palladium(Ⅱ) Complexes Containing Bulky Azole Ligands

  • Corresponding author: Yong-Fei ZENG, yfzeng@nankai.edu.cn Gui-Yan LIU, guiyanliu2013@163.com
  • Received Date: 6 November 2019
    Accepted Date: 19 December 2019

    Fund Project: the Natural Science Foundation of Tianjin 16JCYBJC19700the National Natural Science Foundation of China 21771138

Figures(3)

  • Bulky azole ligands in combination with PdCl2 provide three new palladium(Ⅱ) complexes. All these complexes, as pre-catalysts, have high catalytic efficiency for the Suzuki-Miyaura cross-coupling reactions of sterically hindered aryl chlorides and good to high yields are obtained with low catalysts loadings (0.1 mol%) under mild conditions in air.
  • 加载中
    1. [1]

      Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 2002, 102, 1359–1470.  doi: 10.1021/cr000664r

    2. [2]

      Tsuji, J. Palladium Reagents and Catalysts. John Wiley and Sons: New York 1995.

    3. [3]

      Brunel, J. M. Update 1 of: BINOL: a versatile chiral reagent. Chem. Rev. 2007, 107, PR1–PR45.  doi: 10.1021/cr078004a

    4. [4]

      Pu, L. 1, 1΄-binaphthyl dimers, oligomers, and polymers:   molecular recognition, asymmetric catalysis, and new materials. Chem. Rev. 1998, 98, 2405–2494.  doi: 10.1021/cr970463w

    5. [5]

      Christmann, U.; Vilar, R. Monoligated palladium species as catalysts in cross-coupling reactions. Angew. Chem., Int. Ed. 2005, 44, 366–374.  doi: 10.1002/anie.200461189

    6. [6]

      Liu, G. Y.; Han, F. W.; Liu, C. X.; Wu, H. L.; Zeng, Y. F.; Zhu, R. J.; Yu, X.; Rao, S.; Huang, G. P.; Wang, J. H. A highly active catalyst system for Suzuki-Miyaura coupling of aryl chlorides. Organometallics. 2019, 38, 1459–1467.  doi: 10.1021/acs.organomet.8b00883

    7. [7]

      Ormerod, D.; Dorbec, M.; Merkul, E.; Kaval, N.; Lefèvre, N.; Hostyn, S.; Eykens, L.; Lievens, J.; Sergeyev, S.; Maes, B. U. W. Synthesis of Pd complexes containing tailed NHC ligands and their use in a semicontinuous membrane-assisted Suzuki cross-coupling process. Org. Process Res. Dev. 2018, 22, 1509–1517.  doi: 10.1021/acs.oprd.8b00273

    8. [8]

      Liu, G. Y.; Liu, C. X.; Han, F. W.; Wang, Z. L.; Wang, J. H. Highly active palladium catalysts containing a 1,10-phenanthroline analogue N-heterocyclic carbene for room temperature Suzuki-Miyaura coupling reactions of aryl chlorides with arylboronic acids in aqueous media. Tetra. Lett. 2017, 58, 726–731.  doi: 10.1016/j.tetlet.2016.12.071

    9. [9]

      Guram, A. S. Enabling palladium/phosphine-catalyzed cross-coupling reactions for practical applications. Org. Process Res. Dev. 2016, 20, 1754–1764.  doi: 10.1021/acs.oprd.6b00233

    10. [10]

      Gildner, P. G.; Colacot, T. J. Reactions of the 21st century: two decades of innovative catalyst design for palladium-catalyzed cross-couplings. Organometallics. 2015, 34, 5497–5508.  doi: 10.1021/acs.organomet.5b00567

    11. [11]

      Melvin, P. R.; Nova, A.; Balcells, D.; Dai, W.; Hazari, N.; Hruszkewycz, D. P.; Shah, H. P.; Tudge, M. T. Design of a versatile and improved precatalyst scaffold for palladium-catalyzed cross-coupling: (η3-1-tBu-indenyl)2(μ-Cl)2Pd2. ACS Catal. 2015, 5, 3680–3688.  doi: 10.1021/acscatal.5b00878

    12. [12]

      Li, H. B.; Johansson Seechurn, C. C. C.; Colacot, T. J. Development of preformed Pd catalysts for cross-coupling reactions, beyond the 2010 Nobel Prize. ACS Catal. 2012, 2, 1147–1164.  doi: 10.1021/cs300082f

    13. [13]

      Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. The development of bulky palladium NHC complexes for the most-challenging cross-coupling reactions. Angew. Chem., Int. Ed. 2012, 51, 3314–3332.  doi: 10.1002/anie.201106131

    14. [14]

      Miura, M. Rational ligand design in constructing efficient catalyst systems for Suzuki-Miyaura coupling. Angew. Chem., Int. Ed. 2004, 43, 2201–2203.  doi: 10.1002/anie.200301753

    15. [15]

      Han, F. W.; Xu, Y.; Zhu, R. J.; Liu, G. Y.; Chen, C.; Wang, J. H. Highly active NHC-Pd(Ⅱ) complexes for cross coupling of aryl chlorides and arylboronic acids: an investigation of the effect of remote bulky groups. New J. Chem. 2018, 42, 7422–7427.  doi: 10.1039/C8NJ01047A

    16. [16]

      Li, Y.; Han, F. W.; Xu, Z. Y.; Wang, R.; Yan, C. X.; Ou, Y. J.; Lu, Q.; Liu, G. Y.; Zeng, Y. F. Synthesis, crystal structure and catalytic activity of a Pd-PEPPSI complex bearing bromine group. Chin. J. Struct. Chem. 2019, 38, 429–433.

    17. [17]

      Aydın, A. A new palladium complex containing the mixture of carbene and phosphine ligands: synthesis, crystal structure and spectral FT-IR, NMR and UV-Vis researches. Chin. J. Struct. Chem. 2019, 38, 1664–1672.

    18. [18]

      de Meijere, A.; Diederich, F. Metal-catalyzed cross coupling reactions, 2nd edn., Wiley-VCH, Weinheim 2004.

    19. [19]

      Liu, C. X.; Liu, G. Y.; Zhao, H. K. A highly active Pd(Ⅱ) complex with 1-tritylimidazole ligand for Suzuki-Miyaura and Heck coupling reactions. Chin. J. Chem. 2016, 34, 1048–1052.  doi: 10.1002/cjoc.201600272

    20. [20]

      Liu, Y.; Ren, W. M.; Liu, C.; Fu, S.; Wang, M.; He, K. K.; Li, R. R.; Zhang, R.; Lu, X. B. Mechanistic understanding of dinuclear cobalt(Ⅲ) complex mediated highly enantioselective copolymerization of meso-epoxides with CO2. Macromolecules. 2014, 47, 7775–7788.  doi: 10.1021/ma5019186

    21. [21]

      Tran, P. T.; Hoang, V. H.; Thorat, S. A.; Kim, S. E.; Ann, J.; Chang, Y. J.; Nam, D. W.; Song, H.; Mook-Jung, I.; Lee, J.; Lee, J. Structure-activity relationship of human glutaminyl cyclase inhibitors having an N-(5-methyl-1H-imidazol-1-yl)propyl thiourea template. Bioorgan. Med. Chem. 2013, 21, 3821–3830.  doi: 10.1016/j.bmc.2013.04.005

    22. [22]

      Rezaei, Z.; Khabnadideh, S.; Pakshir, K.; Hossaini, Z.; Amiri, F.; Assadpour, E. Design, synthesis, and antifungal activity of triazole and benzotriazole derivatives. Eur. J. Med. Chem. 2009, 44, 3064–3067.  doi: 10.1016/j.ejmech.2008.07.012

    23. [23]

      Sheldrick, G. M. SHELXT-integrated space-group and crystal structure determination. Acta Crystallogr. A 2015, 71, 3–8.  doi: 10.1107/S2053273314026370

    24. [24]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    25. [25]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.  doi: 10.1107/S0021889808042726

    26. [26]

      Xi, C. J.; Wu, Y. W.; Yan, X. Y. cis-Fashioned palladium(Ⅱ) complexes of 2-phenylbenzimidazole ligands: synthesis, characterization, and catalytic behavior towards Suzuki-Miyaura reaction. J. Organomet. Chem. 2008, 693, 3842–3846.  doi: 10.1016/j.jorganchem.2008.09.042

    27. [27]

      Gurbuz, N.; Özdemir, İ.; Çetinkaya, B.; Seçkin, T. Silica-supported 3-4,5-dihydroimidazol-1-yl-propyltriethoxysilanedichloropalladium(Ⅱ) complex: Heck and Suzuki cross-coupling reactions. Appl. Organomet. Chem. 2003, 17, 776–780.  doi: 10.1002/aoc.524

    28. [28]

      Trivedi, M.; Singh, G.; Nagarajan, R.; Rath, N. P. Imidazole containing palladium(Ⅱ) complexes as efficient pre-catalyst systems for Heck and Suzuki coupling reaction: synthesis, structural characterization and catalytic properties. Inorg. Chim. Acta. 2013, 394, 107–116.  doi: 10.1016/j.ica.2012.08.003

    29. [29]

      Szulmanowicz, M. S.; Zawartka, W.; Gniewek, A.; Trzeciak, A. M. Structure, dynamics and catalytic activity of palladium(Ⅱ) complexes with imidazole ligands. Inorg. Chim. Acta. 2010, 363, 4346–4354.  doi: 10.1016/j.ica.2010.08.037

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    7. [7]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    8. [8]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    9. [9]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    10. [10]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    11. [11]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(2)
  • Abstract views(300)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return