Citation: Yamina BENELHADJ-DJELLOUL, Nourdine BOUKABCHA, Nadia BENHALIMA, Salem YAHIAOUI, Abdelkader CHOUAIH, Abdelouahab ZANOUN. X-ray Structure and Density Functional Theory Investigations of 4-((2R)-2-(3, 4-dibromophenyl)-1-fluoro cyclopropyl)-N-(o-tolyl)benzamide Compound[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1601-1614. doi: 10.14102/j.cnki.0254-5861.2011-2657 shu

X-ray Structure and Density Functional Theory Investigations of 4-((2R)-2-(3, 4-dibromophenyl)-1-fluoro cyclopropyl)-N-(o-tolyl)benzamide Compound

  • Corresponding author: Abdelkader CHOUAIH, achouaih@gmail.com
  • Received Date: 9 November 2019
    Accepted Date: 3 June 2020

Figures(9)

  • In this work, the structure of 4-((2R)-2-(3, 4-dibromophenyl)-1-fluorocyclopropyl)-N-(o-tolyl) benzamide (DBFB) has been determined at room temperature using single-crystal X-ray diffraction data. The structure of the compound was solved using 1464 observed reflections with I ≥ 2σ(I). It crystallizes in monoclinic space group P21 with a = 20.0820(10), b = 10.2770(10), c = 4.860(2) Å, β = 95.9600(10)°, V = 997.6(4) Å3, Z = 2, Dc = 1.675 g/m3, F(000) = 500, Μr = 503.18, μ = 4.09 mm-1 and the final R = 0.0639. The molecular packing of the title compound exhibits C–H⋅⋅⋅O and C–H⋅⋅⋅F hydrogen bonds forming a supramolecular network. Furthermore, conformational analysis has been performed in order to confirm the most stable conformer of the title compound. Geometrical parameters of the keto conformer in the ground state have been obtained using density functional theory (DFT) method with B3LYP/6-31G(d, p) level of theory. In general, a good agreement between the calculated and experimental results was observed. The normal modes of vibration, molecular boundary orbitals (HOMO and LUMO), reactivity descriptors, Mullikan atomic charges and molecular electrostatic potential for the title compound have been evaluated and discussed.
  • 加载中
    1. [1]

      Cruz-Cabeza, A. J.; Allen F. H. Conformation and geometry of cyclopropane rings having π-acceptor substituents: a theoretical and database study. Acta Cryst. B 2011, 67, 94–102.  doi: 10.1107/S0108768110049517

    2. [2]

      Hamzaoui, F.; Chouaih, A.; Lagant, P.; Belarbi, O.; Vergoten, G. A comparative X-ray diffraction study and ab initio calculation on RU60358, a new pyrethroid. Int. J. Mol. Sci. 2006, 7, 255–265.  doi: 10.3390/i7080255

    3. [3]

      Baert, F.; Guelzim, A. X-ray structure of the pyrethroid insecticide {1R-[1α(S*), 2α]}-2-(2, 2-dichlorovinyl)-3, 3-dimethyl cyclopropane carboxylic acid cyano(3-phenoxyphenyl) methyl ester (RU 24501). Acta Cryst. C 1991, 47, 606–608.

    4. [4]

      Hamzaoui, F.; Lamiot, J.; Baert, F. X-ray structure of a new pyrethroid, RU 52259. Acta Cryst. C 1993, 49, 818–820.

    5. [5]

      Brooks, I. C.; Haus, J.; Blumenthal, R. R.; Davis Jr, B. S. SBP-1382, a new synthetic pyrethroid. Soap Chem. Spec. 1969, 45, 62–64.

    6. [6]

      Hill, A. S.; McAdam, D. P.; Edward, S. L.; Skerritt, J. H. Quantitation of bioresmethrin, a synthetic pyrethroid grain protectant, by enzyme immunoassay. J. Agric. Food Chem. 1993, 41, 2011–2018.  doi: 10.1021/jf00035a038

    7. [7]

      Qu, J. P.; Deng, C.; Zhou, J.; Sun, X. L.; Tang, Y. Switchable reactions of cyclopropanes with enol silyl ethers. Controllable synthesis of cyclopentanes and 1, 6-dicarbonyl compounds. J. Org. Chem. 2009, 74, 7684–7689.  doi: 10.1021/jo901340v

    8. [8]

      Hu, B.; Xing, S.; Ren, J.; Wang, Z. Total synthesis of (±)-bruguierol A via an intramolecular [3+2] cycloaddition of cyclopropane 1, 1-diester. Tetrahedron 2010, 66, 5671–5674.  doi: 10.1016/j.tet.2010.05.057

    9. [9]

      Bhanot, S. K.; Singh, M.; Chatterjee, N. R. The chemical and biological aspects of fluoroquinolones reality and dreams. Curr. Pharm. Des. 2001, 7, 331–335.

    10. [10]

      Boger, D. L.; Hughes, T. V.; Hedrick, M. P. Synthesis, chemical properties, and biological evaluation of CC-1065 and duocarmycin analogues incorporating the 5-methoxycarbonyl-1, 2, 9, 9a-tetrahydrocyclopropa [c]benz[e] indol-4-one alkylation subunit. J. Org. Chem. 2001, 66, 2207–2216.  doi: 10.1021/jo001772g

    11. [11]

      Ellis, D.; Kuhen, K. L.; Anaclerio, B.; Wu, B.; Wolff, K.; Yin, H.; Bursulaya, B.; Caldwell, J.; Karanewsky, D.; He, Y. Design, synthesis, and biological evaluations of novel quinolones as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 4246–4251.  doi: 10.1016/j.bmcl.2006.05.073

    12. [12]

      Hamzaoui, F.; Baert, F. A new pyrethroid insecticide, RU41414. Acta Cryst. C 1996, 52, 689–690.  doi: 10.1107/S0108270195013102

    13. [13]

      Elliott, M. The relationship between the structure and the activity of pyrethroids. Bull. Wld Hlth Org. 1970, 44, 315–324.

    14. [14]

      Elliott, M.; Farnham, A. W.; Janes, N. F.; Needham, P. H.; Pulman, D. A. Insecticidal activity of the pyrethrins and related compounds. Pestic. Sci. 1975, 6, 537–542.  doi: 10.1002/ps.2780060514

    15. [15]

      Ali, R.; Fatemeh, Z. N.; Younes, H.; Sang Woo, J.; Masoome, S.; Katarzyna, Ś.; Tadeusz, L.; Farideh, G. Synthesis, crystal structure and theoretical calculations of N-benzyl-1-(5-(3-chlorophenyl)-1, 3, 4-oxadiazol-2-yl)cyclopentanamine. Chin. J. Struct. Chem. 2018, 37, 679–692.

    16. [16]

      Zhai, Z. W.; Shi, Y. X.; Yang, M. Y.; Sun, Z. H.; Weng, J. Q.; Tan, C. X.; Liu, X. H.; Li, B. J.; Zhang, Y. G. Synthesis, crystal structure, DFT studies and antifungal activity of 5-(4-cyclopropyl-5-((3-fluorobenzyl)sulfonyl)-4H-1, 2, 4-triazol-3-yl)-4-methyl-1, 2, 3-thiadiazole. Chin. J. Struct. Chem. 2016, 35, 25–33.

    17. [17]

      Hooriye, Y.; Ali Reza, K.; Ali, R. Synthesis and chemical shifts calculation of α-acyloxycarboxamides derived from indane-1, 2, 3-trione by DFT and HF methods. Chin. J. Struct. Chem. 2012, 31, 1346–1356.

    18. [18]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    19. [19]

      Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.  doi: 10.1063/1.464913

    20. [20]

      Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.  doi: 10.1103/PhysRevB.37.785

    21. [21]

      Cohen, H. D.; Roothaan, C. C. J. Electric dipole polarizability of atoms by the Hartree-Fock method. I. Theory for closed-shell systems. J. Chem. Phys. 1965, 43, 34–39.  doi: 10.1063/1.1701512

    22. [22]

      Jamroz, M. H. Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim. Acta A 2004, 114, 220–230.

    23. [23]

      Rauhut, G.; Pulay, P. Transferable scaling factors for density functional derived vibrational force fields. J. Phys. Chem. 1995, 99, 3093–3100.  doi: 10.1021/j100010a019

    24. [24]

      Gómez Marigliano, A. C.; Varetti, E. L. Self-association of formamide in carbon tetrachloride solutions: an experimental and quantum chemistry vibrational and thermodynamic study. J. Phys. Chem. A 2002, 106, 1100–1106.  doi: 10.1021/jp011060+

    25. [25]

      Dimitrova, Y.; Tsenov, J. A. Theoretical study of the structures and vibrational spectra of the hydrogen-bonded systems of 4-cyanophenol with N-bases. Spectrochim. Acta Part A 2007, 68, 454–459.  doi: 10.1016/j.saa.2006.11.050

    26. [26]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A. 02. Gaussian, Inc., Pittsburgh PA 2009.

    27. [27]

      Allegretti, P. E.; Milazzo, C. B.; Castro, E. A.; Furlong J. J. P. Mass spectrometry as a valuable tool for the study of tautomerism of amides and thioamides. J. Mol. Struct. (THEOCHEM. ) 2002, 589–590, 161–170.

    28. [28]

      Yahiaoui, S.; Chouaih, A.; Hamzaoui, F. X-ray and DFT crystal structure determination and conformational analysis of a pyrethroid compound. Chin. J. Struct. Chem. 2013, 32, 1544–1552.

    29. [29]

      Singh, H.; Singh, S.; Srivastava, A.; Tandon, P.; Bharti, P.; Kumar, S.; Maurya, R. Conformational analysis and vibrational study of daidzein by using FT-IR and FT-Raman spectroscopies and DFT calculations. Spectrochem. Acta Part A: Mol. Biomol. Spectrosc. 2014, 120, 405–415.  doi: 10.1016/j.saa.2013.10.045

    30. [30]

      Tessier, J.; Teche, A.; Demoute, J. P. Proceedings of the 5th IUPAC International Congress of Pesticide Chemistry. J. Miyamoto, P. C. Kearney, Ed., Pergamon Press: Oxford, New York 1983, 197–202.

    31. [31]

      Tessier, J.; Teche, A.; Demoute, J. P. Pesticide Chemistry: Human Welfare and the Environment. J. Miyamoto, P. C. Kearney Ed., Pergamon Press: Oxford, New York 1983, 1, 95–100.

    32. [32]

      Sharma, A.; Jad, Y. E.; Ghabbour, H. A.; De la Torre, B. G.; Kruger, H. G.; Albericio, F.; El-Faham, A. Synthesis, crystal structure and DFT studies of 1, 3-dimethyl-5-propionylpyrimidine-2, 4, 6(1H, 3H, 5H)-trione. Crystals 2017, 7, 31–40.  doi: 10.3390/cryst7010031

    33. [33]

      Silverstein, M.; Bassler, G. C.; Morril, C. Spectroscopic Identification of Organic Compounds. John Wiley: New York 1981.

    34. [34]

      Subashchandrabose, S.; Saleem, H.; Erdogdu, Y.; Dereli, O.; Thanikachalam, V.; Jayabharathi, J. Structural, vibrational and hyperpolarizability calculation of (E)-2-(2-hydroxybenzylideneamino)-3-methylbutanoic acid. Spectrochem. Acta Part A: Mol. Biomol. Spectrosc. 2012, 86, 231–241.  doi: 10.1016/j.saa.2011.10.029

    35. [35]

      Varsanyi, G. Assignment for Vibrational Spectra of Seven Hundred Benzene Derivatives. Academic Kiaclo: Budapest 1973.

    36. [36]

      Sortur, V.; Yenagi, J.; Tonannavar, J.; Jadhav, V. B.; Kulkarni, M. V. Vibrational assignments for 7-methyl-4-bromomethylcoumarin, as aided by RHF and B3LYP/6-31G* calculations. Spectrochem. Acta Part A: Mol. Biomol. Spectrosc. 2008, 71, 688–694.  doi: 10.1016/j.saa.2008.01.016

    37. [37]

      Risgin, J. H. Fluorocarbons and related compounds, Vol. II. Academic press: New York 1954, 449–452.

    38. [38]

      Shakila, G.; Saleem H.; Sundaraganesan, N. FT-IR, FT-Raman, NMR and U-V spectral investigation: computation of vibrational frequency, chemical shifts and electronic structure calculations of 1-bromo-4-nitrobenzene. World Scientific News 2017, 61, 150–185.

    39. [39]

      Seminario, J. M. Recent Developments and Applications of Modern Density Functional Theory, Vol. 4. Elsevier 1996, pp. 800–806.

    40. [40]

      Parr, R. G.; Pearson, R. G. Absolute hardness: comparison parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516.  doi: 10.1021/ja00364a005

    41. [41]

      Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions. J. Chem. Phys. 1955, 23 1833–1840.  doi: 10.1063/1.1740588

    42. [42]

      Drissi, M.; Benhalima, N.; Megrouss, Y.; Rahmani, R.; Chouaih, A.; Hamzaoui, F. Theoretical and experimental electrostatic potential around the m-nitrophenol molecule. Molecules 2015, 20, 4042–4054.  doi: 10.3390/molecules20034042

    43. [43]

      Megrouss, Y.; Benhalima, N.; Bahoussi R.; Boukabcha, N.; Chouaih, A.; Hamzaoui, F. Determination of electrostatic parameters of a coumarin derivative compound C17H13NO3 by X-ray and density functional theory. Chin. Phys. B 2015, 24, 106103–7.  doi: 10.1088/1674-1056/24/10/106103

    44. [44]

      Boubegra, N.; Chouaih, A.; Drissi, M.; Hamzaoui, F. Structural and electron charge density studies of a nonlinear optical compound 4, 4 di-methyl amino cyano biphenyl. Chin. Phys. B 2014, 23, 016103–6.  doi: 10.1088/1674-1056/23/1/016103

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    2. [2]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    7. [7]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    8. [8]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    9. [9]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    10. [10]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    11. [11]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    12. [12]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    13. [13]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    16. [16]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    17. [17]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    18. [18]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    19. [19]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    20. [20]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

Metrics
  • PDF Downloads(1)
  • Abstract views(337)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return