Citation: Wen-Xu ZHENG, Tao LI, Zheng XIANG, Chang-Cang HUANG. Cytosinium Isophthalate: Crystal Structure Redetermination and Room Temperature Phosphorescence[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1707-1713. doi: 10.14102/j.cnki.0254-5861.2011-2647 shu

Cytosinium Isophthalate: Crystal Structure Redetermination and Room Temperature Phosphorescence

  • Corresponding author: Chang-Cang HUANG, cchuang@fzu.edu.cn
  • Received Date: 24 October 2019
    Accepted Date: 19 January 2020

    Fund Project: the Natural Science Foundation of Fujian Province 2018J01688

Figures(8)

  • The title compound cytosinium isophthalate (C-H2IA) self-assembly of cytosine (C) and isophthalic acid (H2IA) in aqueous media has been synthesized and the crystal structure with a reasonable protonation state is redetermined. Single-crystal X-ray diffraction analysis reveals that each asymmetric unit contains one protoned cytosine molecule and one deprotoned isophthalic acid. The proton transferred from carboxylic acid to the pyrimidine ring is disordered across an inversion center with occupancy of 0.5 and the proton located to one of the carboxylate group lies on an inversion center shared by two crystallographically equivalent oxygen atoms. In addition, the cytosine molecules are connected by complementary hydrogen bonds to form a one-dimensional tape structure. The neighboring isophthalic acids are connected via hydrogen bonds between carboxyl groups to form a one-dimensional lattice like tape. Furthermore, the adjacent organic base tapes and organic acid tapes are stacked one with another through π-π stacking interactions to form a three-dimensional supramolecular structure. Interestingly, C-H2IA displays a green phosphorescence in solid state at room temperature with the lifetime of 0.7 s determined by time resolved studies, indicating that supramolecular C-H2IA is a potential pure organic phosphorescent luminogens.
  • 加载中
    1. [1]

      Yang, Z.; Mao, Z.; Zhang, X. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew. Chem., Int. Ed. Engl. 2016, 55, 2181–2185.  doi: 10.1002/anie.201509224

    2. [2]

      (a) Kuei, C. Y.; Liu, S. H.; Chou, P. T. Room temperature blue phosphorescence: a combined experimental and theoretical study on the bis-tridentate Ir(Ⅲ) metal complexes. Dalton Trans. 2016, 45, 15364–15373; (b) Hirata, S. Recent advances in materials with room-temperature phosphorescence: photophysics for triplet exciton stabilization. Adv. Optical Mater. 2017, 5, 1700116–1700165.

    3. [3]

      (a) Gong, Y.; Chen, G.; Peng, Q. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv. Mater. 2015, 27, 6195–6201; (b) Xiao, L.; Wu, Y.; Chen, J. Highly efficient room-temperature phosphorescence from halogen-bonding-assisted doped organic crystals. J. Phys. Chem. A 2017, 121, 8652–8658.

    4. [4]

      (a) Ge, C. H.; Zhang, X. Y.; Yu, F. Hydrogen-bonded assembly of Ni(Ⅱ) and Cu(Ⅱ) complexes generate 3D supramolecular frameworks. J.  Chem.  Crystallogr. 2008, 38, 501–505; (b) Nirmalram, J. S.; Tamilselvi, D.; Muthiah, P. T. Hydrogen bonded supramolecular assembly in N6-benzyladeninium nitrate and N6-benzyladeninium 3-hydroxy picolinate: a synthetic cytokinin. J. Chem. Crystallogr. 2011, 41, 864–867.

    5. [5]

      Chen, J. The complexation between 'texas sized' molecular box and linear n-aliphate dianion: en route to supramolecular organic frameworks (SOFs) for selectively CO2 absorption. Tetrahedron 2016, 72, 431–435.  doi: 10.1016/j.tet.2015.11.062

    6. [6]

      Ni, X. L.; Chen, S.; Yang, Y. Facile cucurbit[8]uril-based supramolecular approach to fabricate tunable luminescent materials in aqueous solution. J. Am. Chem. Soc. 2016, 138, 6177–6183.  doi: 10.1021/jacs.6b01223

    7. [7]

      Han, Z. B.; Xiao, Z. Z.; Hao, M. Functional hydrogen-bonded supramolecular framework for K+ ion sensing. Cryst. Growth Des. 2015, 15, 531–533.  doi: 10.1021/cg501259g

    8. [8]

      Lin, X. M.; Niu, J. L.; Wen, P. X. A polyhedral metal-organic framework based on supramolecular building blocks: catalysis and luminescent sensing of solvent molecules. Cryst. Growth Des. 2016, 16, 4705–4710.  doi: 10.1021/acs.cgd.6b00779

    9. [9]

      Zhang, Y.; Zhan, T. G.; Zhou, T. Y. Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid. Chem. Comm. 2016, 52, 7588–7591.  doi: 10.1039/C6CC03631G

    10. [10]

      Bian, L.; Shi, H.; Wang, X. Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly. J. Am. Chem. Soc. 2018, 140, 10734–10739.  doi: 10.1021/jacs.8b03867

    11. [11]

      Ebenezer, S.; Muthiah, P. T. Design of co-crystals/salts of aminopyrimidines and carboxylic acids through recurrently occurring xynthons. Cryst. Growth Des. 2012, 12, 3766–3785.  doi: 10.1021/cg3005954

    12. [12]

      Ayed, M.; Ayed, B.; Haddad, A. Synthesis and structural characterization of new inorganic-organic hybrid: arsenomolybdate compound with cytosinium cations. Bull. Mater. Sci. 2015, 38, 13–21.  doi: 10.1007/s12034-014-0805-8

    13. [13]

      Marsh, R. E.; Bierstedt, R.; Eichhorn, E. L. The crystal structure of cytosine-5-acetic acid. Acta Crystallogr. 1962, 15, 310–316.  doi: 10.1107/S0365110X62000791

    14. [14]

      Perumalla, S. R.; Suresh, E.; Pedireddi, V. R. Nucleobases in molecular recognition: molecular adducts of adenine and cytosine with COOH functional groups. Angew. Chem., Int. Ed. Engl. 2005, 44, 7752–7757.  doi: 10.1002/anie.200502434

    15. [15]

      Macrae, C. F.; Bruno, I. J.; Chisholm, J. A. Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. Journal of Applied Crystallogr. 2008, 41, 466–470.  doi: 10.1107/S0021889807067908

    16. [16]

      (a) Turner, M. J.; McKinnon, M. J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17 (2017). University of Western Australia. http://hirshfeldsurface.net 2017; (b) Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587; (c) Bakavoli, M.; Rahimizadeh, M.; Feizyzadeh, B. 3,6-di(p-chlorophenyl)-2,7-dihydro-1,4,5-thiadiazepine: crystal structure and decoding intermolecular interactions with hirshfeld surface analysis. J. Chem. Crystallogr. 2010, 40, 746–752.

  • 加载中
    1. [1]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    2. [2]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    3. [3]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    4. [4]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    5. [5]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    6. [6]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

    7. [7]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    8. [8]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    9. [9]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    10. [10]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    11. [11]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    12. [12]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    13. [13]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    14. [14]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    15. [15]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    16. [16]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    17. [17]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    18. [18]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    19. [19]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    20. [20]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

Metrics
  • PDF Downloads(3)
  • Abstract views(274)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return