Citation: Guo-Hua CHEN, Ning JIANG, Hai-Yan XIANG, Hai-Bo DU. Theoretical Analysis of Structural Characteristics of Morin Rearrangement for Cephalosporins Prepared from Penicillin Sulfoxide[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1594-1600. doi: 10.14102/j.cnki.0254-5861.2011-2641 shu

Theoretical Analysis of Structural Characteristics of Morin Rearrangement for Cephalosporins Prepared from Penicillin Sulfoxide

  • Corresponding author: Guo-Hua CHEN, chgh29@163.com
  • Received Date: 15 October 2019
    Accepted Date: 23 December 2019

    Fund Project: Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities 2016JXY01the Opening Project of Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education LYJ1105Sichuan University of Science and Engineering talent introduction fund 2017RCL19

Figures(5)

  • The structure of penicillin sulfoxide is rearranged to cephalosporins by the Morin rearrangement. It is a unit reaction for the preparation of various types of cephalosporins. In order to make better use of the reaction and in view of the shortage of the reaction theory, this study used m062x/6-311++G (d, p) to explore the possible ring-opening reaction of the penicillin sulfoxide. It is found that the isomer of (S)-sulfoxide is a necessary structure. At the same time, the intramolecular hydrogen bonding effect between the side-chain amide proton (-CONH-) and the sulfinyl oxygen (-SO) is the decisive structure factor for the formation of alkenyl in ring-opening reaction, and the best reaction path is S0- > TS2- > IN1 channel. The main effect of acid catalysis is to catalyze the dehydration reaction of sulfenic acid to form sulfur cations for subsequently ring closing reaction.
  • 加载中
    1. [1]

      Morin, R. B.; Jackson, B. G.; Mueller, R. A.; Lavagnino, E. R.; Scanlon, W. B.; Andrews, S. L. Chemistry of cephalosporin antibiotics. III. chemical correlation of penicillin and cephalosporin antibiotics. J. Am. Chem. Soc. 1963, 85, 1896–1897.

    2. [2]

      Spry, D. O. Conversion of penicillin to cephalosporin via a double sulfoxide rearrangement. J. Am. Chem. Soc. 1970, 92, 5006–5008.  doi: 10.1021/ja00719a054

    3. [3]

      De Koning, J. J.; Kooreman, H. J.; Tan, H. S.; Verweij, J. One-step, high yield conversion of penicillin sulfoxides to deacetoxycephalosporins. J. Org. Chem. 1975, 40, 1346–1347.  doi: 10.1021/jo00897a037

    4. [4]

      Barton, D. H. R.; Comer, F.; Greig, D. G. T.; Sammes, P. G.; Cooper, C. M.; Hewitt, G.; Underwood, W. G. E. Transformations of penicillin. Part I. Preparation and rearrangements of 6β-phenylacetamidopenicillanic sulphoxides. J. Chem. Soc. C 1971, 3540–3550.

    5. [5]

      Morin, R. B.; Jackson, B. G.; Mueller, R. A.; Lavagnino, E. R.; Scanlon, W. B.; Andrews, S. L. Chemistry of cephalosporin antibiotics. XV. transformations of penicillin sulfoxide. synthesis of cephalosporin compounds. J. Am. Chem. Soc. 1969, 91, 1401–1407.  doi: 10.1021/ja01034a023

    6. [6]

      Archer, R. A.; Kitchell, B. S. The photochemical rearrangement of a sulfoxide. J. Am. Chem. Soc. 1966, 88, 3462–3463.  doi: 10.1021/ja00966a071

    7. [7]

      Freed, J. D.; Hart, D. J.; Magomedov, N. A. Trapping of the putative cationic intermediate in the morin rearrangement with carbon nucleophiles. J. Org. Chem. 2001, 66, 839–852.  doi: 10.1021/jo0013406

    8. [8]

      Keerthi, K.; Sivaramakrishnan, S.; Gates, K. S. Evidence for a morin type intramolecular cyclization of an alkene with a phenylsulfenic acid group in neutral aqueous solution. Chem. Res. Toxicol. 2008, 21, 1368–1374.  doi: 10.1021/tx8000187

    9. [9]

      Kamiya, T.; Teraji, T.; Saito, Y.; Hashimoto, M.; Nakaguchi, O.; Oku, T. Studies on β-lactam antibiotics. I. A novel conversion of penicillins into cephalosporins. Tetra. Lett. 1973, 14, 3001–3004.  doi: 10.1016/S0040-4039(01)96303-8

    10. [10]

      Salehpour, P.; Yegani, R.; Hajmohammadi, R. Determination of optimal operation conditions for production of cephalosporin G from penicillin G potassium. Org. Process Res. Dev. 2012, 16, 1507–1512.  doi: 10.1021/op300076q

    11. [11]

      Hughes, D. L. Patent review of manufacturing routes to fifth-generation cephalosporin drugs. part 1, ceftolozane. Org. Process Res. Dev. 2017, 21, 430–443.  doi: 10.1021/acs.oprd.7b00033

    12. [12]

      Nudelman, A.; McCaully, R. J. Rearrangements of penicillin sulfoxides. J. Org. Chem. 1977, 42, 2887–2890.  doi: 10.1021/jo00437a022

    13. [13]

      Nudelman, A. The chemistry of optically active sulfur compounds part III. Phosphorus Sulfur. 1976, 2, 51–94.

    14. [14]

      Hart, D. J.; Magomedov, N. Spiroquinazoline support studies: new cascade reactions based on the morin rearrangement. J. Org. Chem. 1999, 64, 2990–2991.  doi: 10.1021/jo990147c

    15. [15]

      Freed, J. D.; Hart, D. J.; Magomedov, N. A. Trapping of the putative cationic intermediate in the morin rearrangement with carbon nucleophiles. J. Org. Chem. 2001, 66, 839–852.  doi: 10.1021/jo0013406

    16. [16]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G. V.; Barone, B.; Mennucci, G. A.; Petersson, H.; Nakatsuji, M.; Caricato, X.; Li, H. P.; Hratchian, A. F.; Izmaylov, J.; Bloino, G.; Zheng, J. L.; Sonnenberg, M.; Hada, M.; Ehara, K.; Toyota, R.; Fukuda, J.; Hasegawa, M.; Ishida, T.; Nakajima, Y.; Honda, O.; Kitao, H.; Nakai, T.; Vreven, J. A.; Montgomery, Jr., J. E.; Peralta, F.; Ogliaro, M.; Bearpark, J. J.; Heyd, E.; Brothers, K. N.; Kudin, V. N.; Staroverov, T.; Keith, R.; Kobayashi, J.; Normand, K.; Raghavachari, A.; Rendell, J. C.; Burant, S. S.; Iyengar, J.; Tomasi, M.; Cossi, N.; Rega, J. M.; Millam, M.; Klene, J. E.; Knox, J. B.; Cross, V.; Bakken, C.; Adamo, J.; Jaramillo, R.; Gomperts, R. E.; Stratmann, O.; Yazyev, A. J.; Austin, R.; Cammi, C.; Pomelli, J. W.; Ochterski, R. L.; Martin, K.; Morokuma, V. G.; Zakrzewski, G. A.; Voth, P.; Salvador, J. J.; Dannenberg, S.; Dapprich, A. D.; Daniels, O.; Farkas, J. B.; Foresman, J. V.; Ortiz, J.; Cioslowski; Fox, D. J. Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT 2013.

    17. [17]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396.  doi: 10.1021/jp810292n

    18. [18]

      Bader, R. E. W. Atoms in Molecules: A Quantum Theory. Clarendon Press: Oxford, U. K. 1990, p56–78.

    19. [19]

      Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2011, 33, 580–592.

    20. [20]

      Kukolja, S.; Jones, N. D.; Chaney, M. O.; Elzey, T. K.; Gleissner, M. R.; Paschal, J. W.; Dorman, D. E. Azetidinone antibiotics. XIII. structure and stereochemistry of isomeric penam and cepham derivatives. J. Org. Chem. 1975, 40, 2388–2391.  doi: 10.1021/jo00904a028

    21. [21]

      Scheiner, S. Hydrogen Bonding: A Theoretical Perspective. Oxford University Press, NY 1997, p12–20.

    22. [22]

      Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Mol. Phyls. 1970, 19, 553–566.  doi: 10.1080/00268977000101561

    23. [23]

      Cooper, R. D. G.; DeMarco, P. V.; Cheng, J. C.; Jones, N. D. Structural studies on penicillin derivatives. I. configuration of phenoxymethylpenicillin sulfoxide. J. Am. Chem. Soc. 1969, 91, 1408–1415.  doi: 10.1021/ja01034a024

  • 加载中
    1. [1]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    4. [4]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    5. [5]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    6. [6]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

    7. [7]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    10. [10]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    11. [11]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    12. [12]

      Quan ZhouXiao-Min ChenXujie QinZhe-Ning ChenJun ChenWei Zhuang . The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration. Chinese Chemical Letters, 2025, 36(4): 109770-. doi: 10.1016/j.cclet.2024.109770

    13. [13]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    14. [14]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    15. [15]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    16. [16]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    17. [17]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    18. [18]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    19. [19]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    20. [20]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

Metrics
  • PDF Downloads(1)
  • Abstract views(301)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return