Citation: Xu-Min CAI, Xin-Fei CHEN, Tian-Qi MU, Yu-Ting LIN, Shen-Lin HUANG, Min-Xia YAO. Syntheses, Crystal Structures, and Electrochemical Properties of Dehydroabietic Acid-based Schiff Bases[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1699-1706. doi: 10.14102/j.cnki.0254-5861.2011-2639 shu

Syntheses, Crystal Structures, and Electrochemical Properties of Dehydroabietic Acid-based Schiff Bases

  • Corresponding author: Xu-Min CAI, xumin.cai@njfu.edu.cn Shen-Lin HUANG, shuang@njfu.edu.cn Min-Xia YAO, yaomx@njtech.edu.cn
  • Received Date: 14 October 2019
    Accepted Date: 8 February 2020

    Fund Project: the National Natural Science Foundation of China 21601087the National Natural Science Foundation of China 21401101the Topnotch Academic Programs Project TAPPthe Priority Academic Program Development of Jiangsu Higher Education Institution PAPD

Figures(3)

  • Two Schiff bases (DAMBA-Fc and DAA-Fc) derived from dehydroabietic acid have been successfully synthesized and characterized by means of FT-IR, elemental analysis, HRMS, and NMR spectroscopy. The crystal structure of DAA-Fc can be determined by single-crystal X-ray diffraction. The compound is of monoclinic system, space group P21 with a = 10.7379(6), b = 7.5004(4), c = 33.3294(18) Å, β = 97.996(3)º, Z = 4, V = 2658.2(3) Å3, Mr = 481.48, Dc = 1.203 g/cm3, S = 1.034, μ = 0.585 mm-1, F(000) = 1032, the final R = 0.0566 and wR = 0.0701 for 5645 observed reflections (I > 2σ(I)). In addition, cyclic and differential pulse voltammogram techniques have been applied to differentiate the redox properties of the aromatic- and aliphatic-connected Schiff bases DAMBA-Fc and DAA-Fc, respectively.
  • 加载中
    1. [1]

      Takahashi, N.; Kawada, T.; Goto, T.; Kim, C. S.; Taimatsu, A.; Egawa, K.; Yamamoto, T.; Jisaka, M.; Nishimura, K.; Yokota, K.; Yu, R.; Fushiki, T. Abietic acid activates peroxisome proliferator-activated receptor-γ (PPARγ) in RAW264.7 macrophages and 3T3-L1 adipocytes to regulate gene expression involved in inflammation and lipid metabolism. FEBS Lett. 2003, 550, 190–194.  doi: 10.1016/S0014-5793(03)00859-7

    2. [2]

      Alvarez-Manzaneda, E. J.; Chahboun, R.; Guardia, J. J.; Lachkar, M.; Dahdouh, A.; Lara, A.; Messouri, I. New route to 15-hydroxydehydroabietic acid derivatives: application to the first synthesis of some bioactive abietane and nor-abietane type terpenoids. Tetra. Lett. 2006, 47, 2577–2580.  doi: 10.1016/j.tetlet.2006.02.037

    3. [3]

      Gigante, B.; Santos, C.; Silva, A. M.; Curto, M. J. M.; Nascimento, M. S. J.; Pinto, E.; Pedro, M.; Cerqueira, F.; Pinto, M. M.; Duarte, M. P.; Laires, A.; Rueff, J.; Gonçalves, J.; Pegado, M. I.; Valdeira, M. L. Catechols from abietic acid: synthesis and evaluation as bioactive compounds. Bioorg. Med. Chem. 2003, 11, 1631–1638.  doi: 10.1016/S0968-0896(03)00063-4

    4. [4]

      Halbrook, N. J.; Lawrence, R. V. The isolation of dehydroabietic acid from disproportionated rosin. J. Org. Chem. 1966, 31, 4246–4247.  doi: 10.1021/jo01350a510

    5. [5]

      Bernardo, G.; Esteves, M. A.; Guerreiro, A. M.; Gigante, B.; Morgado, J. Luminescence properties of bipolar stylbeneamine-quinoxalines. Opt. Mater. 2008, 31, 320–327.  doi: 10.1016/j.optmat.2008.05.001

    6. [6]

      Fernández, M. A.; Tornos, M. P.; García, M. D.; de las Heras, B.; Villar, A. M.; Sáenz, M. T. Anti-inflammatory activity of abietic acid, a diterpene isolated from Pimenta racemosa var. grissea. J. Pharm. Pharmacol. 2001, 53, 867–872.

    7. [7]

      Ulusu, N. N.; Ercil, D.; Sakar, M. K.; Tezcan, E. F. Abietic acid inhibits lipoxygenase activity. Phytother. Res. 2002, 16, 88–90.  doi: 10.1002/ptr.983

    8. [8]

      Chen, N. Y.; Duan, W. G.; Lin, G. S.; Liu, L. Z.; Zhang, R.; Li, D. P. Synthesis and antifungal activity of dehydroabietic acid-based 1,3,4-thiadiazole-thiazolidinone compounds. Mol. Divers. 2016, 20, 897–905.  doi: 10.1007/s11030-016-9691-x

    9. [9]

      Vahermo, M.; Krogerus, S.; Nasereddin, A.; Kaiser, M.; Brun, R.; Jaffe, C. L.; Yli-Kauhaluoma, J.; Moreira, V. M. Antiprotozoal activity of dehydroabietic acid derivatives against Leishmania donovani and Trypanosoma cruzi. Med. Chem. Commun. 2016, 7, 457–463.  doi: 10.1039/C5MD00498E

    10. [10]

      Hou, W.; Luo, Z.; Zhang, G. J.; Cao, D. H.; Li, D.; Ruan, H. Q.; Ruan, B. H.; Su, L.; Xu, H. T. Click chemistry-based synthesis and anticancer activity evaluation of novel C-14 1,2,3-triazole dehydroabietic acid hybrids. Eur. J. Med. Chem. 2017, 138, 1042–1052.  doi: 10.1016/j.ejmech.2017.07.049

    11. [11]

      Fei, B. L.; Li, W.; Xu, W. S.; Long, J. Y.; Liu, Q. B.; Sun, W. Y.; Anson, C. E.; Powell, A. K. Synthesis, crystal structure, DNA binding, antibacterial, and cytotoxic activities of two chiral copper(Ⅱ) complexes. Eur. J. Inorg. Chem. 2013, 2013, 5919–5927.  doi: 10.1002/ejic.201300685

    12. [12]

      Gu, W.; Miao, T. T.; Hua, D. W.; Jin, X. Y.; Tao, X. B.; Huang, C. B.; Wang, S. F. Synthesis and in vitro cytotoxic evaluation of new 1H-benzo[d]imidazole derivatives of dehydroabietic acid. Bioorg. Med. Chem. Lett. 2017, 27, 1296–1300.  doi: 10.1016/j.bmcl.2017.01.028

    13. [13]

      Zhao, F. Y.; Lu, W.; Su, F.; Xu, L.; Jiang, D.; Sun, X.; Shi, J. Z.; Zhou, M. Y.; Lin, F.; Cao, F. L. Synthesis and potential antineoplastic activity of dehydroabietylamine imidazole derivatives. Med. Chem. Commun. 2018, 9, 2091–2099.  doi: 10.1039/C8MD00487K

    14. [14]

      Zhao, F. Y.; Wang, W. F.; Lu, W.; Xu, L.; Yang, S. L.; Cai, X. M.; Zhou, M. Y.; Lei, M.; Ma, M. T.; Xu, H. J.; Cao, F. L. High anticancer potency on tumor cells of dehydroabietylamine Schiff-base derivatives and a copper(Ⅱ) complex. Eur. J. Med. Chem. 2018, 146, 451–459.  doi: 10.1016/j.ejmech.2018.01.041

    15. [15]

      Lozano-Cruz, T.; Ortega, P.; Batanero, B.; Copa-Patiño, J. L.; Soliveri, J.; de la Mata, F. J.; Gómez, R. Synthesis, characterization and antibacterial behavior of water-soluble carbosilane dendrons containing ferrocene at the focal point. Dalton Trans. 2015, 44, 19294–19304.  doi: 10.1039/C5DT02230D

    16. [16]

      Long, B. H.; He, C. L.; Yang, Y. B.; Xiang, J. N. Synthesis, characterization and antibacterial activities of some new ferrocene-containing penems. Eur. J. Med. Chem. 2010, 45, 1181–1188.  doi: 10.1016/j.ejmech.2009.12.045

    17. [17]

      Li, S. H.; Wang, Z. J.; Wei, Y. F.; Wu, C. Y.; Gao, S. P.; Jiang, H.; Zhao, X. Q.; Yan, H.; Wang, X. M. Antimicrobial activity of a ferrocene-substituted carborane derivative targeting multidrug-resistant infection. Biomaterials 2013, 34, 902–911.  doi: 10.1016/j.biomaterials.2012.10.069

    18. [18]

      Yang, F.; Xu, X. L.; Gong, Y. H.; Qiu, W. W.; Sun, Z. R.; Zhou, J. W.; Audebert, P.; Tang, J. Synthesis and nonlinear optical absorption properties of two new conjugated ferrocene-bridge-pyridinium compounds. Tetrahedron 2007, 63, 9188–9194.  doi: 10.1016/j.tet.2007.06.058

    19. [19]

      Qu, J.; Song, Y. L.; Ji, W.; Jing, S.; Zhu, D. R.; Huang, W.; Zheng, M. X.; Li, Y. L.; Ma, J. Macrocyclic Se4N2[7, 7]ferrocenophane and Se2N[10]ferrocenophane containing benzyl unit: synthesis, complexation, crystal structures, electrochemical and optical properties. Dalton Trans. 2016, 45, 3417–3428.  doi: 10.1039/C5DT04763C

    20. [20]

      Zheng, Q. D.; He, G. S.; Lu, C. G.; Prasad, P. N. Synthesis, two- and three-photon absorption, and optical limiting properties of fluorene-containing ferrocene derivatives. J. Mater. Chem. 2005, 15, 3488–3493.  doi: 10.1039/b508005c

    21. [21]

      Cao, Q. Y.; Pradhan, T.; Kim, S.; Kim, J. S. Ferrocene-appended aryl triazole for electrochemical recognition of phosphate ions. Org. Lett. 2011, 13, 4386–4389.  doi: 10.1021/ol201722d

    22. [22]

      Cao, Q. Y.; Lee, M. H.; Zhang, J. F.; Ren, W. X.; Kim, J. S. Ferrocene-based novel electrochemical chemodosimeter for mercury ion recognition. Tetra. Lett. 2011, 52, 2786–2789.  doi: 10.1016/j.tetlet.2011.03.121

    23. [23]

      Allen, D. W.; Berridge, R.; Bricklebank, N.; Forder, S. D.; Palacio, F.; Coles, S. J.; Hursthouse, M. B.; Skabara, P. J. Structural and magnetic properties of a novel ferrocenyl-diiodine charge transfer complex. Inorg. Chem. 2003, 42, 3975–3977.  doi: 10.1021/ic034092f

    24. [24]

      Singh, A.; Chowdhury, D. R.; Paul, A. A kinetic study of ferrocenium cation decomposition utilizing an integrated electrochemical methodology composed of cyclic voltammetry and amperometry. Analyst 2014, 139, 5747–5754.  doi: 10.1039/C4AN01325E

    25. [25]

      Rosa, V.; Gaspari, A. P. S.; Folgosa, F.; Cordas, C. M.; Tavares, P.; Santos-Silva, T.; Barroso, S.; Avilés, T. Imine ligands based on ferrocene: synthesis, structural and Mössbauer characterization and evaluation as chromogenic and electrochemical sensors for Hg2+. New J. Chem. 2018, 42, 3334–3343.  doi: 10.1039/C7NJ04319H

    26. [26]

      Cai, X. M.; Chen, X. F.; Zhang, X. D.; Huang, Y.; Gu, W.; Wang, F. Syntheses, crystal structures, and electrochemical properties of three anhydrides based on ferrocenecarboxylic acid and dehydroabietic acid. Chin. J. Struct. Chem. DOI: 10.14102/j.cnki.0254-5861.2011-2472.

    27. [27]

      Wang, D. L.; Niu, Z. M.; Liu, H. D. Purification and characterization of optically active resolving reagent dehydroabietylamine. Transactions of Beijing Institute of Technology 2004, 24, 357–359.  doi: 10.3969/j.issn.1001-0645.2004.04.021

    28. [28]

      Lei, L.; Xie, D. H.; Song, B. L.; Jiang, J. Z.; Pei, X. M.; Cui, Z. G. Photoresponsive foams generated by a rigid surfactant derived from dehydroabietic acid. Langmuir 2017, 33, 7908–7916.  doi: 10.1021/acs.langmuir.7b00934

    29. [29]

      Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, A71, 3–8.

    30. [30]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3–8.

    31. [31]

      Cai, X. M.; Zimmermann, T. K.; Pöthig, A.; Kühn, F. E. Synthesis and electrochemical properties of cis- and trans-[Mo2(O2C-Fc)2(DArF)2] (O2C-Fc = ferrocenecarboxylate; DArF = N, N′-diarylformamidinate). Inorg. Chem. 2015, 54, 6631–6640.  doi: 10.1021/acs.inorgchem.5b00964

    32. [32]

      Cai, X. M.; Meister, T. K.; Pöthig, A.; Kühn, F. E. Filling a gap: electrochemical property comparison of the completed compound series [Mo2(DArF)n(O2C-Fc)4–n] (DArF = N, N΄-diarylformamidinate; O2C-Fc = ferrocenecarboxylate). Inorg. Chem. 2016, 55, 858–864.  doi: 10.1021/acs.inorgchem.5b02329

    33. [33]

      Cai, X. M.; Riener, K.; Herdtweck, E.; Pöthig, A.; Kühn, F. E. Rational synthesis and characterization of dimolybdenum(Ⅱ) compounds bearing ferrocenyl-containing ligands toward modulation of electronic coupling. Inorg. Chem. 2015, 54, 3272–3280.  doi: 10.1021/ic502913w

    34. [34]

      Sun, L.; Gao, B. H.; Jiang, W. N.; Xu, L.; Lu, W.; Yang, S. L.; Jiang, D.; Chen, J. C.; Xue, H. Y.; Shi, J. Z. Electrochemical sensing application of isorhamnetin: detecting Hg2+ as an example. Int. J. Electrochem. Sci. 2018, 13, 4933–4945.

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    6. [6]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    7. [7]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    10. [10]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    11. [11]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    12. [12]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    13. [13]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    14. [14]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    18. [18]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    19. [19]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    20. [20]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(4)
  • Abstract views(422)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return