Citation: Zhi SHEN, Bao-Min LUO, Hai-Quan XIE, Qiang ZHAO. Tricarboxy Ligand Cu Metal-organic Framework with Magnetic and Proton Conduction Properties[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1689-1693. doi: 10.14102/j.cnki.0254-5861.2011-2637 shu

Tricarboxy Ligand Cu Metal-organic Framework with Magnetic and Proton Conduction Properties

  • Corresponding author: Hai-Quan XIE, xie-hq@163.com Qiang ZHAO, zhaoqiang0522@126.com
  • Received Date: 11 October 2019
    Accepted Date: 12 December 2019

    Fund Project: University Key Scientific Research Project of Henan Province 19B150014

Figures(4)

  • Hydrothermal reaction of Cu(NO3)2·3H2O and 4-(4-carboxyphenoxy)isophthalic acid (H3cpia) results in a two-dimensional coordination polymer based on paddle-wheel-like dinuclear clusters, namely [C60H54Cu4O39]n (1). Complex 1 is of triclinic system, space group P\begin{document}$ \overline 1 $\end{document} with a = 10.7318(18), b = 12.267(2), c = 14.528(2) Å, α = 113.560(2)º, β = 96.156(3)º, γ = 103.552(3)º, V = 1660.5(5) Å3, Z = 1, S = 1.057, F(000) = 842, R = 0.0517 and wR = 0.1426 (I > 2σ(I)). In this structure, tricarboxylate liagnds are partial deprotonation and potenial proton carriers. Strong antiferromagnetic interaction between Cu ions exists within the Cu2 cluster and complex 1 exhibits relatively high proton conductivity (σ > 1.23 × 10-5 S⋅cm-1) at 76% relative humidity (RH).
  • 加载中
    1. [1]

      Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46, 126−157.  doi: 10.1039/C6CS00250A

    2. [2]

      Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611−8638.  doi: 10.1039/C8CS00688A

    3. [3]

      Thielemann, D. T.; Wagner, A. T.; Rösch, E.; Kölmel, D. K.; Heck, J. G.; Rudat, B.; Neumaier, M.; Feldmann, C.; Schepers, U.; Bräse, S.; Roesky, P. W. Luminescent cell-penetrating pentadecanuclear lanthanide clusters. J. Am. Chem. Soc. 2013, 135, 7454−7457.  doi: 10.1021/ja403539t

    4. [4]

      Zhao, Q.; Li, R. F.; Xing, S. K.; Liu, X. M.; Hu, T. L.; Bu, X. H. A highly selective on/off fluorescence sensor for cadmium(Ⅱ). Inorg. Chem. 2011, 50, 10041−10047.  doi: 10.1021/ic2008182

    5. [5]

      Barry, D. E.; Caffrey, D. F.; Gunnlaugsson, T. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands. Chem. Soc. Rev. 2016, 45, 3244−3274.  doi: 10.1039/C6CS00116E

    6. [6]

      Yao, S. L.; Liu, S. J.; Tian, X. M.; Zheng, T. F.; Cao, C.; Niu, C. Y.; Chen, Y. Q.; Chen, J. L.; Huang, H. P.; Wen, H. R. A Zn-based metal-organic framework with a rare tcj topology as a turn-on fluorescent sensor for acetylacetone. Inorg. Chem. 2019, 58, 3578−3581.  doi: 10.1021/acs.inorgchem.8b03316

    7. [7]

      Harding, J. L.; Reynolds, M. M. Composite materials with embedded metal organic framework catalysts for nitric oxide release from bioavailable S-nitrosothiols. J. Mater. Chem. B 2014, 2, 2530−2536.  doi: 10.1039/C3TB21458C

    8. [8]

      Zheng, S. T.; Zhang, J. X.; Li, X.; Fang, W. H.; Yang, G. Y. Cubic polyoxometalate-organic molecular cage. J. Am. Chem. Soc. 2010, 132, 15102−15103.  doi: 10.1021/ja105986b

    9. [9]

      Harding, J. L.; Reynolds, M. M. Composite materials with embedded metal organic framework catalysts for nitric oxide release from bioavailable S-nitrosothiols. J. Mater. Chem. B 2014, 2, 2530−2536.  doi: 10.1039/C3TB21458C

    10. [10]

      Liu, Y. C.; Lin, P.; Du, S. W. Two novel homochiral enantiomorphicanic 3D metal-organic frameworks: synthesis, crystal structure, luminescent and SHG properties. Chin. J. Struct. Chem. 2013, 10, 1509−1516.

    11. [11]

      Li, G. G.; Tian, Y.; Zhao, Y.; Lin, J. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 2015, 44, 8688−8713.  doi: 10.1039/C4CS00446A

    12. [12]

      Liu, S. J.; Han, S. D.; Zhao, J. P.; Xu, J. L.; Bu, X. H. In-situ synthesis of molecular magnetorefrigerant materials. Coord. Chem. Rev. 2019, 394, 39−52.  doi: 10.1016/j.ccr.2019.05.009

    13. [13]

      Chow, C. Y.; Eliseeva, S. V.; Trivedi, E. R.; Nguyen, T. N.; Kampf, J. W.; Petoud, S.; Pecoraro, V. L. Ga3+/Ln3+ metallacrowns: a promising family of highly luminescent lanthanide complexes that covers visible and near-infrared domains. J. Am. Chem. Soc. 2016, 138, 5100−5109.  doi: 10.1021/jacs.6b00984

    14. [14]

      Zhang, Y.; Chen, L.; Ju, W. W.; Xu, Y. Structural characterization and luminescence properties of two 4d-4f Ln–Ag coordination compounds based on dinuclear lanthanide clusters. Chem. Res. Chin. U. 2014, 30, 194−199.  doi: 10.1007/s40242-014-3368-8

    15. [15]

      Thielemann, D. T.; Wagner, A. T.; Rösch, E.; Kölmel, D. K.; Heck, J. G.; Rudat, B.; Neumaier, M.; Feldmann, C.; Schepers, U.; Bräse, S.; Roesky, P. W. Luminescent cell-penetrating pentadecanuclear lanthanide clusters. J. Am. Chem. Soc. 2013, 135, 7454−7457.  doi: 10.1021/ja403539t

    16. [16]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.

    17. [17]

      Spek, A. L. PLATON, Utrecht University, Utrecht, The Netherlands 2008.

    18. [18]

      Li, Y. W.; Zhao, J. P.; Wang, L. F.; Bu, X. H. An Fe-based MOF constructed from paddle-wheel and rod-shaped SBUs involved in situ generated acetate. CrystEngComm. 2011, 13, 6002−6006.  doi: 10.1039/c1ce05470h

    19. [19]

      Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 2009, 8, 831−836.  doi: 10.1038/nmat2526

  • 加载中
    1. [1]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    2. [2]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    3. [3]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    4. [4]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    5. [5]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    6. [6]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    7. [7]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    8. [8]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    9. [9]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    10. [10]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    11. [11]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    14. [14]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    15. [15]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    16. [16]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(1)
  • Abstract views(276)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return