Citation: Zi-Wei CAI, Jie SUN, Ye-Ting PAN, Ting-Ting JIANG, Qing LI, Pei-Pei CUI, Jie ZHANG. Synthesis of a Rare Doubly-interpenetrating Zinc(Ⅱ) Coordination Polymer for Applications in Photocatalysis[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 718-726. doi: 10.14102/j.cnki.0254-5861.2011-2617 shu

Synthesis of a Rare Doubly-interpenetrating Zinc(Ⅱ) Coordination Polymer for Applications in Photocatalysis

  • Corresponding author: Jie SUN, 
  • Received Date: 24 September 2019
    Accepted Date: 24 December 2019

    Fund Project: the National Natural Science Foundation of China 21401096the National Natural Science Foundation of China 21701021

Figures(6)

  • A rare doubly-interpenetrating Zn-MOF (complex 1), formulated as {[Zn(tci)-(bpy)(NO3)·DMF·0.5CH3CN}n (H3tci = tri(2-carboxyethyl) isocyanurate, bpy = 4,4-bipyridine), has been constructed under solvothermal conditions and characterized by single-crystal X-ray diffraction, infrared spectroscopy (IR) and powder X-ray diffraction (PXRD). 1 crystallizes in monoclinic system, space group C2/c with a = 21.5759(4), b = 12.87221(18), c = 26.4917(5) Å, β = 109.462(2)°, V = 6937.1(2) Å3, C50H56N14O27Zn4, Mr = 1546.56, Z = 4, Dc = 1.481 g·cm-3, μ = 2.325 mm-1 λ = 1.54178 Å, F(000) = 3160, S = 1.041, R = 0.0621 and wR = 0.1773. 1 features a two-fold interpenetrating 3D hms topology. Moreover, the thermal stabilities, fluorescent and CO2 adsorption properties were investigated. Complex 1 showed highly encouraging photocatalytic degradation of toxic dye molecules with a potential application in wastewater purification.
  • 加载中
    1. [1]

      Gholizadeh Khasevani, S.; Gholami, M. R. Synthesis of BiOI/ZnFe2O4-metal-organic framework and g-C3N4-based nanocomposites for applications in photocatalysis. Ind. Eng. Chem. Res. 2019, 58, 9806–9818.  doi: 10.1021/acs.iecr.8b05871

    2. [2]

      Wo, R.; Li, Q. L.; Zhu, C.; Zhang, Y.; Qiao, G. F.; Lei, K. Y.; Du, P.; Jiang, W. Preparation and characterization of functionalized metal-organic frameworks with core/shell magnetic particles (Fe3O4@SiO2@MOFs) for the removal of congo red and methylene blue from water solution. J. Chem. Eng. Data 2019, 64, 2455–2463.  doi: 10.1021/acs.jced.8b01251

    3. [3]

      Yu, Y.; Zhao, C.; Liu, X.; Sui, M.; Meng, Y. Selective flocculation of pollutants in wastewater using pH responsive HM-alginate/chitosan complexes. J. Environ. Chem. Eng. 2017, 5,5406–5410.  doi: 10.1016/j.jece.2017.10.025

    4. [4]

      Soltani, T.; Entezari, M. H. Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of Rhodamine B under solar light irradiation. Chem. Eng. J. 2013, 223, 145–154.  doi: 10.1016/j.cej.2013.02.124

    5. [5]

      Anirudhan, T. S.; Ramachandran, M. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Saf. Environ. Prot. 2015, 95, 215–225.  doi: 10.1016/j.psep.2015.03.003

    6. [6]

      Ciardelli, G.; Corsi, L.; Marcucci, M. Membrane separation for wastewater reuse in the textile industry. Resour., Conserv. Recycl. 2001, 31, 189–197.  doi: 10.1016/S0921-3449(00)00079-3

    7. [7]

      Liang, Y. H.; Shang, R.; Lu, J. R.; Liu, L.; Hu, J. S.; Cui, W. Q. Ag3PO4@UMOFNs core-shell structure: two-dimensional MOFs promoted photoinduced charge separation and photocatalysis. ACS Appl. Mater. Inter. 2018, 10, 8758–8769.  doi: 10.1021/acsami.8b00198

    8. [8]

      Zhao, H. M.; Xia, Q. S.; Xing, H. Z.; Chen, D. S.; Wang, H. Construction of pillared-layer MOF as efficient visible-light photocatalysts for aqueous Cr(Ⅵ) reduction and dye degradation. ACS Sustainable Chem. Eng. 2017, 5, 4449–4456.  doi: 10.1021/acssuschemeng.7b00641

    9. [9]

      Li, Y. Y.; Jiang, J.; Fang, Y.; Cao, Z. L.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Lu, J. M. TiO2 nanoparticles anchored onto the metal-organic framework NH2-MIL-88B(Fe) as an adsorptive photocatalyst with enhanced Fenton-like degradation of organic pollutants under visible light irradiation. ACS Sustainable Chem. Eng. 2018, 6, 16186–16197.  doi: 10.1021/acssuschemeng.8b02968

    10. [10]

      Li, M. H.; Zheng, Z. J.; Zheng, Y. Q.; Cui, C.; Li, C. X.; Li, Z. Q. Controlled growth of metal-organic framework on up conversion nanocrystals for NIR-enhanced photocatalysis. ACS Appl. Mater. Inter. 2017, 9, 2899–2905.  doi: 10.1021/acsami.6b15792

    11. [11]

      Malik, A.; Nath, M.; Mohiyuddin, S.; Packirisamy, G. Multifunctional CdSNPs@ZIF-8: potential antibacterial agent against GFP-expressing Escherichia coli and Staphylococcus aureus and efficient photocatalyst for degradation of methylene blue. ACS Omeg. 2018, 3, 8288–8308.  doi: 10.1021/acsomega.8b00664

    12. [12]

      Robin, J.; Audebrand, N.; Poriel, C.; Canivet, J.; Calvez, G.; Roisnel, T.; Dorcet, V.; Roussel, P. A series of chiral metal-organic frameworks based on fluorene di- and tetra-carboxylates: syntheses, crystal structures and luminescence properties. CrystEngComm. 2017, 19, 2042–2056.  doi: 10.1039/C7CE00108H

    13. [13]

      McKinstry, C.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5). Crys. Growth Des. 2013, 13,5481–5486.  doi: 10.1021/cg4014619

    14. [14]

      Deria, P.; Bury, W.; Hod, I.; Kung, C. W.; Karagiaridi, O.; Hupp, J. T.; Farha, O. K. MOF functionalization via solvent-assisted ligand incorporation: phosphonates vs carboxylates. Inorg. Chem. 2015, 54, 2182–2192.

    15. [15]

      Zhang, M. H.; Xin, X. L.; Xiao, Z. Y.; Wang, R. M.; Zhang, L. L.; Sun, D. F. A multi-aromatic hydrocarbon unit induced hydrophobic metal-organic framework for efficient C2/C1 hydrocarbon and oil/water separation. J. Mater. Chem. A 2017, 5, 116–1175.

    16. [16]

      Liang, L. F.; Jiang, F. L.; Chen, Q. H.; Yuan, D. Q.; Hong, M. C. Ultra-microporous metal-organic framework with high concentration free carboxyl groups and Lewis basic sites for CO2 capture at ambient conditions. Chin. J. Struct. Chem. 2019, 38, 559–565.

    17. [17]

      Li, P. Z.; Su, J.; Liang, J.; Liu, J.; Zhang, Y. Y.; Chen, H. Z.; Zhao, Y. L. A highly porous metal-organic framework for large organic molecule capture and chromatographic separation. Chem. Commun. 2017, 53, 3434–3437.  doi: 10.1039/C7CC01063J

    18. [18]

      Choi, S.; Kim, T.; Ji, H.; Lee, H. J.; Oh, M. Isotropic and anisotropic growth of metal-organic framework (MOF) on MOF: logical inference on MOF structure based on growth behavior and morphological feature. J. Am. Chem. Soc. 2016, 138, 14434–14440.  doi: 10.1021/jacs.6b08821

    19. [19]

      Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A. H.; Eddaoud, M. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-mof for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 2015, 137, 13308–13318.  doi: 10.1021/jacs.5b07053

    20. [20]

      Zhu, E. W.; Sun, J. J.; Jia, Y.; Qiao, Y.; Zhu, Y.; Che, G. B. Two cd(Ⅱ) coordination polymers based on a flexible tricarboxylate ligand: syntheses, structures, and photoluminescence and catalytic properties. Chin. J. Struct. Chem. 2018, 37, 2003–2010.

    21. [21]

      Zhang, X. J.; Xing, Y. H.; Sun, Z.; Han, J.; Zhang, Y. H.; Ge, M. F.; Niu, S. Y. A series of two-dimensional metal-organic frameworks based on the assembly of rigid and flexible carboxylate-containing mixed ligands with lanthanide metal salts. Cryst. Growth Des. 2007, 7, 2041–2046.  doi: 10.1021/cg070511y

    22. [22]

      Liu, T. F.; Lü, J.; Tian, C. B.; Cao, M. N.; Lin, Z. J.; Cao, R. Complexation of metal ions, including alkali-earth and lanthanide(Ⅲ) ions, in aqueous solution by the ligand 2, 2΄, 6΄, 2΄΄-terpyridyl. Inorg. Chem. 2011, 50, 2764–2771.  doi: 10.1021/ic101742x

    23. [23]

      Nijem, N.; Thissen, P.; Yao, Y. P.; Longo, R. C.; Roodenko, K.; Wu, H. H.; Zhao, Y. G.; Cho, K.; Li. J.; Langreth, D. C.; Chabal, Y. J. Understanding the preferential adsorption of CO2 over N2 in a flexible metal-organic framework. J. Am. Chem. Soc. 2011, 133, 12849–12857.  doi: 10.1021/ja2051149

    24. [24]

      Li, H. J.; Zhao, B.; Ding, R.; Jia, Y. Y.; Hou, H. W.; Fan, Y. T. Structural diversity for a series of novel Zn metal-organic frameworks based on different secondary building units. Cryst. Growth Des. 2012, 12, 4170–4179.  doi: 10.1021/cg3006794

    25. [25]

      Cui, P. P.; Wu, J. L.; Zhao, X. L.; Sun, D.; Zhang, L. L.; Guo, J.; Sun, D. F. Two solvent-dependent zinc(Ⅱ) supramolecular isomers: rare kgd and lonsdaleite network topologies based on a tripodal flexible ligand. Cryst. Growth Des. 2011, 11, 5182–5187.  doi: 10.1021/cg201181s

    26. [26]

      Zhang, M. Y.; Shan, W. J.; Han, Z. B. Syntheses and magnetic properties of three Mn(Ⅱ) coordination polymers based on a tripodal flexible ligand. CrystEngComm. 2012, 14, 1568–1574.  doi: 10.1039/C1CE06213A

    27. [27]

      Han, Z. B.; Zhang, G. X.; Zeng, M. H.; Ge, C. H.; Zou, X. H.; Han, G. X. Synthesis, crystal structure and magnetic properties of two 3-D gadolinium complexes. CrystEngComm. 2009, 11,2629–2633.  doi: 10.1039/b905663g

    28. [28]

      Liang, L. L.; Cai, Y. G.; Weng, N. S.; Zhang, R. L.; Zhao, J. S.; Wang, J. F.; Wu, H. L. A novel uranyl complex UO2(tci)(C3H5N2)·H2O: synthesis, crystal structure and characterization. Inorg. Chem. Comm. 2009, 12, 86–88.  doi: 10.1016/j.inoche.2008.10.027

    29. [29]

      Gao, H.; Lou, X. H.; Li, Q. T.; Du, W. J.; Xu, C. Three new coordination polymers based on tripodal flexible ligand: synthesis, structures and luminescent properties. Inorg. Chim. Acta 2014, 412, 46–51.  doi: 10.1016/j.ica.2013.12.016

    30. [30]

      Han, Z. B.; Zhang, G. X. Solvothermal synthesis of two unique metal-organic frameworks: a 3-fold interpenetrating (3, 4, 5)-connected network and a 2-fold interpenetrating (4, 5)-connected network. CrystEngComm. 2010, 12, 348–351.  doi: 10.1039/B912158G

    31. [31]

      Ghosh, S. K.; Zhang, J. P.; Kitagawa, S. Reversible topochemical transformation of a soft crystal of a coordination polymer. Angew. Chem. Int. Ed. 2007, 46, 7965–7968.  doi: 10.1002/anie.200703086

    32. [32]

      Sheldrick, G. M. SHELXL-97, Program for X-ray crystal Structure Refinement. University of Gottingen, Germany 1997.

    33. [33]

      Spek, A. L. PLATON, A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, Netherlands 2002.

    34. [34]

      Zheng, B.; Luo, J.; Wang, F.; Peng, Y.; Li, G.; Huo, Q.; Liu, Y. Construction of six coordination polymers based on a 5,5΄-(1,2-ethynyl)bis-1,3-benzenedicarboxylic ligand: synthesis, structure, gas sorption, and magnetic properties. Cryst. Growth Des. 2013, 13, 1033–1044.  doi: 10.1021/cg301224z

    35. [35]

      Chen, S. Y.; Yang, E.; Xie, C. L.; Liu, Y. Z.; Xiao, X. F. Synthesis, structure and luminescent property of a new Zn(Ⅱ) coordination polymer based on 1,3,5-benzenetricarboxylate and 4,4΄-bipyridine ligands. Chin. J. Struct. Chem. 2015, 34, 235−240.

    36. [36]

      Zhao, J.; Dong, W. W.; Wu, Y. P.; Wang, Y. N.; Wang, C.; Li, D. S.; Zhang, Q. C. Two (3, 6)-connected porous metal-organic frameworks based on linear trinuclear [Co3(COO)6] and paddlewheel dinuclear [Cu2(COO)4] SBUs: gas adsorption, photocatalytic behaviour, and magnetic properties. J. Mater. Chem. A 2015, 3, 6962−6969.  doi: 10.1039/C4TA06537A

    37. [37]

      Chen, H.; Liu, Y. T.; Cai, T.; Dong, W. Y.; Tang, L.; Xia, X. N.; Wang, L. L.; Li, T. Boosting photocatalytic performance in mixed-valence MIL-53(Fe) by c hanging Fe/Fe ratio. ACS Appl. Mater. Inter. 2019, 11,28791−28800.  doi: 10.1021/acsami.9b05829

    38. [38]

      Rodríguez, N. A.; Savateev, A.; Grela, M. A.; Dontsova, D. Facile synthesis of potassium poly(heptazine imide)(PHIK)/Ti-based metal-organic framework (MIL-125-NH2) composites for photocatalytic applications. ACS Appl. Mater. Inter. 2017, 9, 22941−22949.  doi: 10.1021/acsami.7b04745

  • 加载中
    1. [1]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    2. [2]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    5. [5]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    6. [6]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    7. [7]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    8. [8]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    9. [9]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    10. [10]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    11. [11]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    14. [14]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    15. [15]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    16. [16]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    17. [17]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    18. [18]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    19. [19]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    20. [20]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

Metrics
  • PDF Downloads(3)
  • Abstract views(419)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return