Citation: Yu-Jing NIE, Yan-Hua DENG, Hong-Xu GUO, Shao-Ming YING. Synthesis, Characterization and Adsorption Properties for Al-based Metal-organic Framework[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1029-1034. doi: 10.14102/j.cnki.0254-5861.2011-2576 shu

Synthesis, Characterization and Adsorption Properties for Al-based Metal-organic Framework

  • Corresponding author: Yu-Jing NIE, nieyujing@sina.com Shao-Ming YING, ysm@ndnu.edu.cn
  • Received Date: 21 August 2019
    Accepted Date: 5 December 2019

    Fund Project: the Natural Science Foundation of Fujian Province 2017J01420the Natural Science Foundation of Fujian Province 2018H0030Education Bureau of Fujian Province JZ160453Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry FJKL_FBCM201902

Figures(6)

  • Al-BTC MOFs were prepared in a facile manner via a solvothermal reaction and characterized using FT-IR, XRD, and SEM. The compound was then evaluated as an adsorbent to remove Congo red (CR) from an aqueous solution. The adsorption kinetics was evaluated using the pseudo-first-order and pseudo-second-order, and it was found that the adsorption of CR onto the MOFs was well described by the pseudo-second-order equation. The as-prepared MOFs adsorbent seems to be a promising material in practice for dyes removal from aqueous solution.

    1. [1]

      Zhu, T.; Chen, J. S.; Lou, X. W. Highly efficient removal of organic dyes from waste water using hierarchical NiO spheres with high surface area. J. Phys. Chem. C 2012, 116, 6873-6878.  doi: 10.1021/jp300224s

    2. [2]

      Bulut, E.; Özacar, M.; Şengil, İ. A. Equilibrium and kinetic data and process design for adsorption of Congo red onto bentonite. J. Hazard. Mater. 2008, 154, 613-622.  doi: 10.1016/j.jhazmat.2007.10.071

    3. [3]

      Khan, N. A.; Hasan, Z.; Jhung, S. H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J. Hazard. Mater. 2013, 244–245, 444-456.

    4. [4]

      Guo, H. X.; Niu, B. T.; Wu, X. M.; Zhang, Y.; Ying, S. M. Effective removal of 2, 4, 6-trinitrophenol over hexagonal metal-organic framework NH2-MIL-88B(Fe). Appl. Organometal Chem. 2019, 33, 4580-11.  doi: 10.1002/aoc.4580

    5. [5]

      Wu, Y. W.; Wu, X. M.; Niu, B. T.; Zeng, Y. P.; Zhu, M. H.; Guo, H. X. Facile fabrication of Ag2(bdc)@Ag nano-composites with strong green emission and their response to sulfide anion in aqueous medium. Sens. Actuators B 2018, 255, 3163-3169.  doi: 10.1016/j.snb.2017.09.141

    6. [6]

      Wang, D. F.; Ke, Y. C.; Guo, D.; Guo, H. X.; Chen, J. H.; Weng, W. Facile fabrication of cauliflower-like MIL-100 (Cr) and its simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ from aqueous solution. Sens. Actuators B 2015, 216, 504-510.  doi: 10.1016/j.snb.2015.04.054

    7. [7]

      Guo, H. X.; Guo, D.; Zheng, Z. S.; Weng, W.; Chen, J. H. Visible-light photocatalytic activity of Ag@MIL-125 (Ti) microspheres. Appl. Organomet. Chem. 2015, 29, 618-623.  doi: 10.1002/aoc.3341

    8. [8]

      Haque, E.; Lee, J. E.; Jang, I. T.; Hwang, Y. K.; Chang, J. S.; Jegal, J.; Jhung, S. H. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J. Hazard. Mater. 2010, 181, 535-542.  doi: 10.1016/j.jhazmat.2010.05.047

    9. [9]

      Haque, E.; Jun, J. W.; Jhung, S. H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater. 2011, 185, 507-511.  doi: 10.1016/j.jhazmat.2010.09.035

    10. [10]

      Huo, S. H.; Yan, X. P. Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 2012, 22, 7449-7455.  doi: 10.1039/c2jm16513a

    11. [11]

      Patil, D. V.; Rallapalli, P. B. S.; Dangi, G. P.; Tayade, R. J.; Somani, R. S.; Bajaj, H. C. MIL-53(Al): an efficient adsorbent for the removal of nitrobenzene from aqueous solutions. Ind. Eng. Chem. Res. 2011, 50, 10516-10524.  doi: 10.1021/ie200429f

    12. [12]

      Li, L.; Xiang, S. L.; Cao, S. Q.; Zhang, J. Y.; Ouyang, G. F.; Chen, L. P.; Su, C. Y. A synthetic route to ultralight hierarchically micro/mesoporous Al(Ⅲ)-carboxylate metal-organic aerogels. Nat. Commun. 2013, 4, 1774-1782.  doi: 10.1038/ncomms2757

    13. [13]

      Volkringer, C.; Popov, D.; Loiseau, T.; Ferey, G.; Burghammer, M.; Riekel, C.; Haouas, M.; Taulelle, F. Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100. Chem. Mater. 2009, 21, 5695-5696.  doi: 10.1021/cm901983a

    14. [14]

      Loiseau, T.; Lecroq, L.; Volkringer, C.; Marrot, J.; Ferey, G.; Haouas, M.; Taulelle, F.; Bourrelly, S.; Llewellyn, P.; Latroche. M. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units. J. Am. Chem. Soc. 2006, 128, 10223-10230.  doi: 10.1021/ja0621086

    15. [15]

      Wang, L.; Li, J.; Wang, Y.; Zhao, L.; Jiang, Q. Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chem. Eng. J. 2012, 72, 181-182.

    16. [16]

      Hameed, B. H.; Rahman, A. A. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater. 2008, 160, 576-581.  doi: 10.1016/j.jhazmat.2008.03.028

    17. [17]

      Auta, M.; Hameed, B. H. Chitosan-clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem. Eng. J. 2014, 237, 352-361.  doi: 10.1016/j.cej.2013.09.066

    1. [1]

      Zhu, T.; Chen, J. S.; Lou, X. W. Highly efficient removal of organic dyes from waste water using hierarchical NiO spheres with high surface area. J. Phys. Chem. C 2012, 116, 6873-6878.  doi: 10.1021/jp300224s

    2. [2]

      Bulut, E.; Özacar, M.; Şengil, İ. A. Equilibrium and kinetic data and process design for adsorption of Congo red onto bentonite. J. Hazard. Mater. 2008, 154, 613-622.  doi: 10.1016/j.jhazmat.2007.10.071

    3. [3]

      Khan, N. A.; Hasan, Z.; Jhung, S. H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J. Hazard. Mater. 2013, 244–245, 444-456.

    4. [4]

      Guo, H. X.; Niu, B. T.; Wu, X. M.; Zhang, Y.; Ying, S. M. Effective removal of 2, 4, 6-trinitrophenol over hexagonal metal-organic framework NH2-MIL-88B(Fe). Appl. Organometal Chem. 2019, 33, 4580-11.  doi: 10.1002/aoc.4580

    5. [5]

      Wu, Y. W.; Wu, X. M.; Niu, B. T.; Zeng, Y. P.; Zhu, M. H.; Guo, H. X. Facile fabrication of Ag2(bdc)@Ag nano-composites with strong green emission and their response to sulfide anion in aqueous medium. Sens. Actuators B 2018, 255, 3163-3169.  doi: 10.1016/j.snb.2017.09.141

    6. [6]

      Wang, D. F.; Ke, Y. C.; Guo, D.; Guo, H. X.; Chen, J. H.; Weng, W. Facile fabrication of cauliflower-like MIL-100 (Cr) and its simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ from aqueous solution. Sens. Actuators B 2015, 216, 504-510.  doi: 10.1016/j.snb.2015.04.054

    7. [7]

      Guo, H. X.; Guo, D.; Zheng, Z. S.; Weng, W.; Chen, J. H. Visible-light photocatalytic activity of Ag@MIL-125 (Ti) microspheres. Appl. Organomet. Chem. 2015, 29, 618-623.  doi: 10.1002/aoc.3341

    8. [8]

      Haque, E.; Lee, J. E.; Jang, I. T.; Hwang, Y. K.; Chang, J. S.; Jegal, J.; Jhung, S. H. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J. Hazard. Mater. 2010, 181, 535-542.  doi: 10.1016/j.jhazmat.2010.05.047

    9. [9]

      Haque, E.; Jun, J. W.; Jhung, S. H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater. 2011, 185, 507-511.  doi: 10.1016/j.jhazmat.2010.09.035

    10. [10]

      Huo, S. H.; Yan, X. P. Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 2012, 22, 7449-7455.  doi: 10.1039/c2jm16513a

    11. [11]

      Patil, D. V.; Rallapalli, P. B. S.; Dangi, G. P.; Tayade, R. J.; Somani, R. S.; Bajaj, H. C. MIL-53(Al): an efficient adsorbent for the removal of nitrobenzene from aqueous solutions. Ind. Eng. Chem. Res. 2011, 50, 10516-10524.  doi: 10.1021/ie200429f

    12. [12]

      Li, L.; Xiang, S. L.; Cao, S. Q.; Zhang, J. Y.; Ouyang, G. F.; Chen, L. P.; Su, C. Y. A synthetic route to ultralight hierarchically micro/mesoporous Al(Ⅲ)-carboxylate metal-organic aerogels. Nat. Commun. 2013, 4, 1774-1782.  doi: 10.1038/ncomms2757

    13. [13]

      Volkringer, C.; Popov, D.; Loiseau, T.; Ferey, G.; Burghammer, M.; Riekel, C.; Haouas, M.; Taulelle, F. Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100. Chem. Mater. 2009, 21, 5695-5696.  doi: 10.1021/cm901983a

    14. [14]

      Loiseau, T.; Lecroq, L.; Volkringer, C.; Marrot, J.; Ferey, G.; Haouas, M.; Taulelle, F.; Bourrelly, S.; Llewellyn, P.; Latroche. M. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units. J. Am. Chem. Soc. 2006, 128, 10223-10230.  doi: 10.1021/ja0621086

    15. [15]

      Wang, L.; Li, J.; Wang, Y.; Zhao, L.; Jiang, Q. Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chem. Eng. J. 2012, 72, 181-182.

    16. [16]

      Hameed, B. H.; Rahman, A. A. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater. 2008, 160, 576-581.  doi: 10.1016/j.jhazmat.2008.03.028

    17. [17]

      Auta, M.; Hameed, B. H. Chitosan-clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem. Eng. J. 2014, 237, 352-361.  doi: 10.1016/j.cej.2013.09.066

  • 加载中
    1. [1]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    2. [2]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    3. [3]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    4. [4]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    5. [5]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    6. [6]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    9. [9]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    10. [10]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    11. [11]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    12. [12]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    13. [13]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    14. [14]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    15. [15]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    16. [16]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    17. [17]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    18. [18]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    19. [19]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    20. [20]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

Metrics
  • PDF Downloads(1)
  • Abstract views(275)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return