Citation: Yu JING, Xia-Mei ZHANG, Yan-Feng CUI, Da-Wei LI, Hao SUN, Yu GE, Ya-Hong LI. Two Copper Complexes Based on Derivatives ofImidazo[1, 5-a]pyridine: Syntheses, Structures, and Catalytic Properties[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1057-1062. doi: 10.14102/j.cnki.0254-5861.2011-2549 shu

Two Copper Complexes Based on Derivatives ofImidazo[1, 5-a]pyridine: Syntheses, Structures, and Catalytic Properties

  • Corresponding author: Ya-Hong LI, liyahong@suda.edu.cn
  • Received Date: 26 July 2019
    Accepted Date: 19 January 2020

    Fund Project: the National Natural Science Foundation of China 21772140Natural Science Foundation of Jiangsu Province BK20171213

Figures(3)

  • The syntheses, crystal structures and catalytic activities of two copper complexes are reported. Reaction of CuCl, 3-(pyridin-2-yl)imidazo[1, 5-a]pyridine and pyridine-4-formaldehyde under solvothermal conditions gave [Cu4(L1)2Cl2][CuCl2]2 (1, L1 = 1, 1΄-(pyridin-4-ylmethylene)bis(3-(pyridin-2-yl)imidazo[1, 5-a]pyridine). The ligand L1 was generated in situ from the reaction of 3-(pyridin-2-yl)imidazo[1, 5-a]pyridine and pyridine-4-formaldhyde. The tetranuclear [Cu4(L1)2Cl2]2+ moiety displays McClellan Saddle-like configuration. Reaction of Cu(BF4)2⋅6H2O with 1, 1΄-(pyridin-4-ylmethylene)bis(3-(pyridin-2-yl)imidazo[1, 5-a]pyridine (L2) in glass tube generated [Cu(L2)(H2O)2]2[BF4]2(SiF6)⋅2H2O (2). The structures of 1 and 2 were characterized by X-ray single-crystal diffraction analysis. The catalytic activities of 1 and 2 toward ketalization reactions were studied. They both exhibited high activities for the ketalization of aliphatic ketones by ethylene glycol.
  • 加载中
    1. [1]

      Katritzky, A. R. Comprehensive Heterocyclic Chemistry Ⅲ, 11. Elsevier, Oxford, U. K. 2008.

    2. [2]

      Kim, D.; Wang, L.; Hale, J. J.; Lynch, C. L.; Budhu, R. J.; Maccoss, M.; Mills, S. G.; Malkowitz, L.; Gould, S. L.; DeMartino, J. A.; Springer, M. S.; Hazuda, D.; Miller, M.; Kessler, J.; Hrin, R. C.; Carver, G.; Carella, A.; Henry, K.; Lineberger, J.; Schleif, W. A.; Emini, E. A. Potent 1, 3, 4-trisubstituted pyrrolidine CCR5 receptor antagonists: effects of fused heterocycles on antiviral activity and pharmacokinetic properties. Bioorg. Med. Chem. Lett. 2005, 15, 2129−2134.  doi: 10.1016/j.bmcl.2005.02.030

    3. [3]

      Davey, D.; Erhardt, P. W.; Lumma, W. C.; Wiggins, J. J.; Sullivan, M.; Pang, D.; Cantor, E. Cardiotonic agents. 1. Novel 8-aryl substituted imidazo[1, 2-a]- and -[1, 5-a]pyridines and imidazo[1, 5-a]pyridinones as potential positive inotropic agents. J. Med. Chem. 1987, 30, 1337−1342.  doi: 10.1021/jm00391a012

    4. [4]

      Yan, Y.; Zhang, Y.; Zha, Z.; Wang, Z. Mild metal-free sequential dual oxidative amination of C(sp3)-H bonds: efficient synthesis of imidazo[1, 5-a]pyridines. Org. Lett. 2013, 15, 2274−2277.  doi: 10.1021/ol4008487

    5. [5]

      Cappelli, A.; Giuliani, G.; Anzini, M.; Riitano, D.; Giorgi, G. Vomero, S. Design, synthesis, and structure-affinity relationship studies in NK1 receptor ligands based on azole-fused quinolinecarboxamide moieties. Bioorg. Med. Chem. 2008, 16, 6850−6859.  doi: 10.1016/j.bmc.2008.05.067

    6. [6]

      Ford, N. F.; Browne, L. J.; Campbell, T.; Gemenden, C.; Goldstein, R.; Gude, G; Wasley, J. W. F. Imidazo[1, 5-a]pyridines: a new class of thromboxane A2 synthetase inhibitors. J. Med. Chem. 1985, 28, 164−170.  doi: 10.1021/jm00380a003

    7. [7]

      Kamal, A.; Rao, A. V. S.; Nayak, V. L.; Reddy, N. V. S.; Swapna, K.; Ramakrishna, G.; Alvala, M. Synthesis and biological evaluation of imidazo[1, 5-a]pyridine-benzimidazole hybrids as inhibitors of both tubulin polymerization and PI3K/Akt pathway. Org. Biomol. Chem. 2014, 12, 9864−9880.  doi: 10.1039/C4OB01930J

    8. [8]

      Alvarez, C. M.; Alvarez-Miguel, L.; Garcia-Rodriguez, R.; Martin-Alvarez, J. M.; Miguel, D. 3-(Pyridin-2-yl)imidazo[1, 5-a]pyridine (pyridylindolizine) as ligand in complexes of transition and main-group metals. Eur. J. Inorg. Chem. 2015, 2015, 4921−4934.  doi: 10.1002/ejic.201500776

    9. [9]

      Roseblade, S. J.; Ros, A.; Monge, D.; Alcarazo, M.; Alvarez, E.; Lassaletta, J. M.; Fernandez, R. Imidazo[1, 5-a]pyridin-3-ylidene/thioether mixed C/S ligands and complexes thereof. Organometallics 2007, 26, 2570−2578.  doi: 10.1021/om070063r

    10. [10]

      Alvarez, C. M.; Alvarez-Miguel, L.; Garcia-Rodriguez, R.; Miguel, D. Complexes with 3-(pyridin-2-yl)imidazo[1, 5-a] pyri-dine ligands by spontaneous dimerization of pyridine-2-carbox-aldehyde within the coordination sphere of manganese(Ⅱ) in a one-pot reaction. Dalton Trans. 2012, 41, 7041−7046.  doi: 10.1039/c2dt30453h

    11. [11]

      Roy, M.; Chakravarthi, B. V. S. K.; Jayabaskaran, C.; Karande, A. A.; Chakravarty, A. R. Impact of metal binding on the antitumor activity and cellular imaging of a metal chelator cationic imidazopyridine derivative. Dalton Trans. 2011, 40, 4855−4864.  doi: 10.1039/C0DT01717E

    12. [12]

      Mukherjee, A.; Dhar, S.; Nethaji, M.; Chakravarty, A. R. Ternary iron(Ⅱ) complex with an emissive imidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity. Dalton Trans. 2005, 349−353.

    13. [13]

      Priyanga, S.; Khamrang, T.; Velusamy, M.; Karthi, S.; Ashokkumar, B.; Mayilmurugan, R. Coordination geometry-induced optical imaging of L-cysteine in cancer cells using imidazopyridine-based copper(Ⅱ) complexes. Dalton Trans. 2019, 48, 1489−1503.  doi: 10.1039/C8DT04634D

    14. [14]

      Garino, C.; Ruiu, T.; Salassa, L.; Albertino, A.; Volpi, G.; Gobetto, R.; Hardcastle, K. I. Spectroscopic and computational study on new blue emitting ReL(CO)3Cl complexes containing pyridylimidazo[1, 5-a] pyridine ligands. Eur. J. Inorg. Chem. 2008, 2008, 3587−3591.  doi: 10.1002/ejic.200800348

    15. [15]

      Salassa, L.; Garino, C.; Albertino, A.; Volpi, G.; Nervi, C.; Gobetto, R.; Hardcastle, K. I. Computational and spectroscopic studies of new rhenium(I) complexes containing pyridylimidazo[1, 5-a]pyridine ligands: charge transfer and dual emission by fine-tuning of excited states. Organometallics 2008, 27, 1427−1435.  doi: 10.1021/om701175z

    16. [16]

      Rahmati, A.; Khalesi, Z. One-pot three-component synthesis of imidazo[1, 5-a]pyridines. Information J. Computing 2011, 1, 15−19.

    17. [17]

      Chen, Y. M.; Li, L.; Chen, Z.; Liu, Y. L.; Hu, H. L.; Chen, W. Q.; Liu, W.; Li. Y. H. Metal-mediated controllable creation of secondary, tertiary, and quaternary carbon lefts: a powerful strategy for the synthesis of iron, cobalt, and copper complexes with in situ generated substituted 1-pyridineimidazo[1, 5-a]pyridine ligands. Inorg. Chem. 2012, 51, 9705−9713.  doi: 10.1021/ic300949y

    18. [18]

      Zhang, H. F.; Chen, Y. M.; Qin, Y. R.; Li, Y. H.; Liu, W. Cu and CuI complexes of 1, 1΄-(pyridin-2-ylmethylene)-bis[3-(pyridin-2-yl)imidazo[1, 5-a]pyridine]: in situ generation of the ligand via acetic acid-controlled metal-ligand reactions. Chin. J. Struct. Chem. 2015, 34, 1417−1427.

    19. [19]

      Chen, Y. M.; Li, L.; Cao, Y. Y.; Wu, J.; Gao, Q.; Li, Y. H. Cu-mediated controllable creation of tertiary and quaternary carbon lefts: designed assembly and structures of a new class of copper complexes supported by in situ generated substituted 1-pyridineimidazo[1, 5-a]pyridine ligands. CrystEngComm. 2013, 15, 2675−2681.  doi: 10.1039/c3ce00012e

    20. [20]

      Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen Germany 1997.

    21. [21]

      Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures from Diffraction Data. University of Göttingen Germany 1997.

    22. [22]

      Fei, H. H.; Rogow, D. L.; Oliver, S. R. J. Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(I) and Ag(I). J. Am. Chem. Soc. 2010, 132, 7202−7209.  doi: 10.1021/ja102134c

    23. [23]

      Banik, B. K.; Chapa, M.; Marquez, J.; Cardona, M. A remarkable iodine-catalyzed protection of carbonyl compounds. Tetra. Lett. 2005, 46, 2341−234.  doi: 10.1016/j.tetlet.2005.01.176

  • 加载中
    1. [1]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    2. [2]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    3. [3]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    4. [4]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    5. [5]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    6. [6]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    7. [7]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    8. [8]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    9. [9]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    10. [10]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    11. [11]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    12. [12]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    13. [13]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    14. [14]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    15. [15]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    16. [16]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    17. [17]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    18. [18]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    19. [19]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    20. [20]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

Metrics
  • PDF Downloads(1)
  • Abstract views(165)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return