Citation: Jian-Cheng SHI, Xiao-Qian HUANG, Min LUO, Chu-Sheng HUANG. Identification of Novel and Potent Curcuminoids Inhibitors of Tubulin with Anticancer Activities by 3D-QSAR and Molecular Docking[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1157-1166. doi: 10.14102/j.cnki.0254-5861.2011-2545 shu

Identification of Novel and Potent Curcuminoids Inhibitors of Tubulin with Anticancer Activities by 3D-QSAR and Molecular Docking

  • Corresponding author: Chu-Sheng HUANG, wyc666999@sina.cn
  • Received Date: 23 July 2019
    Accepted Date: 9 January 2020

    Fund Project: National Natural Science Foundation of China 21702034National Natural Science Foundation of China 21861007the Research Foundation of Education Bureau of Guangxi Province 200103YB076Natural Science Foundation of Guangxi Province 2017GXNSFBA198089

Figures(9)

  • The three-dimensional quantitative structure-activity relationships (3D-QSAR) for 37 curcumin derivatives were constructed by CoMFA and CoMSIA methods, respectively. The results showed that the cross validated coefficient (q2) and non-cross-validated coefficient (R2) were 0.711, 0.962 in CoMFA model and 0.774, 0.856 in CoMSIA model, respectively, which suggests that two models are robust and have good exterior predictive capabilities. Based on these two models and the binding mode with tubulin, nine novel curcuminoids inhibitors which could exhibit much higher anticancer potency and efficiently occupy the colchicine binding site of tubulin, were designed. We expect that the results in this paper have the potential to facilitate the process of design and to develop new potent curcumin derivatives with stronger anticancer activities.
  • 加载中
    1. [1]

      Wang, R. B.; Zhang, X. J.; Chen, C. S.; Chen, G. L.; Sarabia, C.; Zhang, Q.; Zheng, S. L.; Wang, G. D.; Chen Q. H. Structure-activity relationship studies of 1, 7-diheteroarylhepta-1, 4, 6-trien-3-ones with two different terminal rings in prostate epithelialcell models. Eur. J. Med. Chem. 2017, 133, 208–226.  doi: 10.1016/j.ejmech.2017.03.067

    2. [2]

      Teiten, M. H.; Gaascht, F.; Eifes, S.; Dicato, M.; Diederich, M. Chemopreventive potential of curcumin in prostate cancer. Genes Nutr. 2010, 5, 61–74.  doi: 10.1007/s12263-009-0152-3

    3. [3]

      Chen, Q. H. Curcumin-based anti-prostate cancer agents. Anticancer Agents Med. Chem. 2015, 15, 138–156.  doi: 10.2174/1871520615666150116102442

    4. [4]

      Li, H. H.; Liu, T.; Xuan, H. X.; Fang, S. B.; Zhao, C. Y. A combination of pharmacophore modeling, virtual screening, and molecular docking studies for a diverse set of colchicine site inhibitors. Med. Chem. Res. 2014, 23, 4713–4723.  doi: 10.1007/s00044-014-1028-7

    5. [5]

      Prise, V. E.; Honess, D. J.; Stratford, M. R. L.; Wilson, J.; Tozer, G. M. The vascular response of tumor and normal tissues in the rat to the vascular targeting agent, combretastatin A-4-phosphate, at clinically relevant doses. Int. J. Oncol. 2002, 21, 717–726.

    6. [6]

      Tozer, G. M.; Kanthou, C.; Parkins, C. S.; Hill, S. A. The biology of the combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol. 2002, 83, 21–38.  doi: 10.1046/j.1365-2613.2002.00211.x

    7. [7]

      Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D. D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 2012, 29, 2943–2971.  doi: 10.1007/s11095-012-0828-z

    8. [8]

      Nakagawa-Goto, K.; Oda, A.; Hamel, E.; Ohkoshi, E.; Lee, K. H.; Goto, M. Development of a novel class of tubulin inhibitor from desmosdumotin B with a hydroxylated bicyclic B-ring. J. Med. Chem. 2015, 58, 2378–2389.  doi: 10.1021/jm501859j

    9. [9]

      Yang, J. H.; Yan, W.; Yu, Y. M.; Wang, Y. X.; Yang, T.; Xue, L. L.; Yuan, X.; Long, C. F.; Liu, Z. W.; Chen, X. X.; Hu, M. S.; Zheng, L.; Qiu, Q.; Pei, H. Y.; Li, D.; Wang, F.; Bai, P.; Wen, J. L.; Ye, H. Y.; Chen, L. J. The compound millepachine and its derivatives inhibit tubulin polymerization by irreversibly binding to the colchicine-binding site in β-tubulin. J. Biol. Chem. 2018, 293, 9461–9472.  doi: 10.1074/jbc.RA117.001658

    10. [10]

      Massarotti, A.; Coluccia, A.; Silvestri, R.; Sorba, G.; Brancale, A. The tubulin colchicine domain: a molecular modeling perspective. Chem. Med. Chem. 2012, 7, 33-42.  doi: 10.1002/cmdc.201100361

    11. [11]

      Li, L.; Jiang, S.; Li, X.; Liu, Y.; Su, J.; Chen, J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur. J. Med. Chem. 2018, 151, 482–494.  doi: 10.1016/j.ejmech.2018.04.011

    12. [12]

      Liu, G. P.; Jiao, Y.; Huang, C. X.; Chang, P. Identification of novel and potent small molecule inhibitors of tubulin with antitumor activities by virtual screening and biological evaluations. J. Comput. Aided Mol. Des. 2019, 33, 659–664.  doi: 10.1007/s10822-019-00206-y

    13. [13]

      Joshi, P.; Tanwar, O.; Rambhade, S.; Bhaisare, M.; Jain, D. 2-D QSAR studies of steroidal natural products oleanic acid and their semisynthetic derivatives as potent protein tyrosine phosphatase 1B inhibitors. Med. Chem. Res. 2012, 21, 351–361.  doi: 10.1007/s00044-010-9529-5

    14. [14]

      III Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959–5967.  doi: 10.1021/ja00226a005

    15. [15]

      Kubinyi, H. Ed. 3D QSAR in Drug Design: Theory, Methods and Applications. ESCOM Science Publishers: Leiden 1993.

    16. [16]

      Lu, Y. K.; Wang, J.; Hu, Y.; Lin, Y.; Lin, Z. H. Molecular modeling studies of vascular endothelial growth factor receptor tyrosine kinase inhibitors combining molecular docking and 3D-QSAR methods. Chin. J. Struct. Chem. 2013, 5, 679–694.

    17. [17]

      Gerhard, K.; Abraham, U.; Thomas, M. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 1994, 37, 4130–4146.  doi: 10.1021/jm00050a010

    18. [18]

      Cao, H. Y.; Zhang, H. B.; Zheng, X. F.; Gao, D. B. 3D QSAR studies on a series of potent and high selective inhibitors for three kinases of RTK family. J. Mol. Graphics Model. 2007, 26, 236–245.  doi: 10.1016/j.jmgm.2006.12.001

    19. [19]

      Leong, S. W.; Chia, S. L.; Abas, F.; Yusoff, K. Asymmetrical meta-methoxylated diarylpentanoids: rational design, synthesis and anti-cancer evaluation in-vitro. Eur. J. Med. Chem. 2018, 157, 716–728.  doi: 10.1016/j.ejmech.2018.08.039

    20. [20]

      Ravelli, R. B. G.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004, 428, 198–202.  doi: 10.1038/nature02393

    21. [21]

      Lv, Y. Y.; Yin, C. S.; Liu, H. Y.; Yi, Z. S.; Wang, Y. 3D-QSAR study on atmospheric half-lives of POPs using CoMFA and CoMSIA. J. Environ. Sci. 2008, 20, 1433–1438.  doi: 10.1016/S1001-0742(08)62545-0

    22. [22]

      SYBYL X-2.0, Tripos Inc., St. Louis, Missouri 2012.

    23. [23]

      Clark, M.; Cramer, R. D. I.; van Opdenbosch, N. Validation of the general purpose Tripos 5.2 force field. J. Comput. Chem. 1989, 10, 982–1012.  doi: 10.1002/jcc.540100804

    24. [24]

      Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity: a rapid access to atomic charges. Tetrahedron 1980, 36, 3219–3228.  doi: 10.1016/0040-4020(80)80168-2

    25. [25]

      Pandey, A.; Mungalpara, J.; Mohan, C. G. Comparative molecular field analysis and comparative molecular similarity indices analysis of hydroxyethylamine derivatives as selective human BACE-1 inhibitor. Mol. Divers. 2010, 14, 39–49.  doi: 10.1007/s11030-009-9139-7

    26. [26]

      Clark, M.; Cramer, R. D.; Opdenbosch, V. N. Validation of the general purpose Tripos 5.2 force field. J. Comput. Chem. 1989, 10, 982–1012.  doi: 10.1002/jcc.540100804

    27. [27]

      Cramer, R. D.; Bunce, J. D.; Patterson, D. E. Cross-validation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct. -Act. Relat. 1988, 7, 18–25.  doi: 10.1002/qsar.19880070105

    28. [28]

      Huang, C. S.; Tu, W. T.; Luo, M.; Shi, J. C. Molecular docking and design of novel heterodimers of donepezil and huperzine fragments as acetylcholinesterase inhibitors. Chin. J. Struct. Chem. 2016, 35, 839–848.

    29. [29]

      Shi, J. C.; Zhao, D.; Luo, M.; Huang, C. S. A mechanism-based 3D-QSAR and DFT approach for the prediction of H5N1 entry inhibitory potency of 3-O-β-chacotriosyl ursolic acid derivatives. Chin. J. Struct. Chem. 2017, 36, 1987–1999.

    30. [30]

      Tropsha, A.; Golbraikh, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276.  doi: 10.1016/S1093-3263(01)00123-1

    31. [31]

      Joshi, P.; Tanwar, O.; Rambhade, S.; Bhaisare, M.; Jain, D. 2-D QSAR studies of steroidal natural products oleanic acid and their semisynthetic derivatives as potent protein tyrosine phosphatase 1B inhibitors. Med. Chem. Res. 2012, 21, 351–361.  doi: 10.1007/s00044-010-9529-5

    32. [32]

      Roy, K. On some aspects of validation of predictive quantitative structure-activity relationship models. Expert. Opin. Drug Discov. 2007, 2, 1567–1577.  doi: 10.1517/17460441.2.12.1567

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    3. [3]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    4. [4]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    5. [5]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    6. [6]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    7. [7]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    8. [8]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    9. [9]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    10. [10]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    11. [11]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    12. [12]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    13. [13]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    14. [14]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    15. [15]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    16. [16]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    17. [17]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    18. [18]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    19. [19]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    20. [20]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

Metrics
  • PDF Downloads(1)
  • Abstract views(287)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return