Citation: Ling-Yun MO, Wen MA, Song KONG, Li-Tang QIN, Yan-Peng LIANG, Jun-Feng DAI, Shu-Shen LIU. Study of the Binding Mode of Quaternary Ammonium Cationic Surfactant to Firefly Luciferase and the Prediction of Binary Mixture Toxicity[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1167-1177. doi: 10.14102/j.cnki.0254-5861.2011-2543 shu

Study of the Binding Mode of Quaternary Ammonium Cationic Surfactant to Firefly Luciferase and the Prediction of Binary Mixture Toxicity

  • Corresponding author: Li-Tang QIN, qinsar@163.com Jun-Feng DAI, 
  • Received Date: 22 July 2019
    Accepted Date: 13 November 2019

    Fund Project: the National Natural Science Foundation of China 21667013the National Natural Science Foundation of China 21866010Natural Science Foundation of Guangxi Province 2018GXNSFAA281156Guilin Scientific Research and Technology Development Program 20180107-5

Figures(2)

  • The wide use of quaternary ammonium cationic surfactants (QACs) results in their release into the environment. Most surfactants have significant biotoxicity. However, existing toxicity data on QACs are still lacking, especially regarding the joint toxic effects of their mixtures. In computer simulation technology, molecular docking technology is commonly used for studying the mode of action of receptors docking with ligands. The research of QACs mixture interaction is relatively rare, and the binding mode of QACs is unknown. In this study, molecular docking technology was applied to explore the QAC binding mode, and the concentration addition (CA) and independent action (IA) models were applied for predicting the mixture toxicity. Firefly luciferase (FLuc) was used as a macromolecular receptor, and five typical QACs: benzalkonium bromide (BLB), tetraethylammonium bromide (TLB), N, N, N-trimethyl-1-tetradecyl ammonium bromide (CTE), tetrabutylammonium chloride (TAC), and dodecyltrimethylammonium chloride (DTC) were used as small molecule ligands. Molecular docking technology was used to investigate the binding mode of macromolecules and small molecules. The luminescence inhibitory effects of individual compounds and binary mixture on FLuc were determined by microplate toxicity assay of luciferase. The prediction of mixture toxicity was performed by CA and IA. The results showed that the relative toxicity follows: TLB < TAC < DTC < BLB < CTE. TLB and TAC showed the BS-Ⅱ binding mode, and BLB, CTE and DTC showed the BS-Ⅲ binding mode. The toxicity of compounds with binding mode BS-Ⅱ was less than that of those with BS-Ⅲ binding mode. Not all mixtures with the same binding mode could be predicted by CA model, and the IA model did not effectively predict the toxicity of mixtures with compound with different binding modes. The mixture toxicities of QACs with the same binding mode mostly presented additive and synergistic effects, while the mixture toxic effects of QACs with different binding modes presented additive or antagonistic effects.
  • 加载中
    1. [1]

      Tezel, U. Fate and Effect of Quaternary Ammonium Compounds in Biological Systems. Doctoral Thesis, Georgia Institute of Technology 2009, p1−6.

    2. [2]

      Doherty, A. C. The Distribution, Fate and Application as Tracers of Quaternary Ammonium Compounds (QACs) in Sewage Impacted Estuaries. Doctoral Thesis, State University of New York at Stony Brook 2013, p2−7.

    3. [3]

      Kreuzinger, N.; Fuerhacker, M.; Scharf, S.; Uhl, M.; Gans, O.; Grillitsch, B. Methodological approach towards the environmental significance of uncharacterized substances: quaternary ammonium compounds as an example. Desalination 2007, 1−3, 209−222.

    4. [4]

      Lara-Martin, P. A.; Li, X. L.; Bopp, R. F.; Brownawell, B. J. Occurrence of alkyltrimethylammonium compounds in urban estuarine sediments: behentrimonium as a new emerging contaminant. Environ. Sci. Technol. 2010, 19, 7569−7575.

    5. [5]

      Ruan, T.; Song, S.; Wang, T.; Liu, R.; Lin, Y.; Jiang, G. Identification and composition of emerging quaternary ammonium compounds in municipal aewage sludge in China. Environ. Sci. Technol. 2014, 48, 4289−4297.  doi: 10.1021/es4050314

    6. [6]

      Liu, N.; Zhang, H.; Zhao, J. F.; Xu, Y.; Ge, F. Mechanisms of cetyltrimethyl ammonium chloride-induced toxicity to photosystem Ⅱ oxygen evolution complex of Chlorella vulgaris F1068. J. Hazard. Mater. 2020, 383, 121063−10.  doi: 10.1016/j.jhazmat.2019.121063

    7. [7]

      Van de Voorde, A.; Lorgeoux, C.; Gromaire, M. C.; Chebbo, G. Analysis of quaternary ammonium compounds in urban stormwater samples. Environ. Pollut. 2012, 164, 150−157.  doi: 10.1016/j.envpol.2012.01.037

    8. [8]

      Bassarab, P.; Williams, D.; Dean, J. R.; Ludkin, E.; Perry, J. J. Determination of quaternary ammonium compounds in seawater samples by solid-phase extraction and liquid chromatography-mass spectrometry. J. Chromatogr. A 2011, 5, 673−677.

    9. [9]

      Wei, R. C.; Li, G. F.; Gao, R.; Sun, T.; Gong, L.; Chen, M.; Wang, R. Simultaneous determination of residues of various quaternary ammonium compounds in milk by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. Chin. J. Anal. Chem. 2014, 5, 711−716.

    10. [10]

      Dumitrescu, G.; Ciochina, L. P.; Stana, L.; Cretescu, I.; Popescu, R.; Filimon, N. M.; Voia, O. S. Acute effects of tetrabutylammonium chloride ionic liquid on the histological structure of liver and kidney in the mouse. Rom. Biotech. Lett. 2014, 1, 8925−8934.

    11. [11]

      Shi, J. W.; Yang, J. Q.; Li, Q. Q. Determination of multiple quaternary ammonium compounds in cosmetics by solid phase extraction - gas chromatography/mass spectrometry. Flav. Fragr. Cosm. 2019, 2, 48−52.

    12. [12]

      Zheng, M. J.; Xiang, L.; Li, Y. W.; Mo, C. H.; Cai, Q. Y.; Huang, X. P.; Wu, X. L.; Zhao, H. M. Simultaneous determination of three quaternary ammonium salt compounds in water by liquid-liquid extraction-gas chromatography/mass spectrometry. Chin. J. Anal. Chem. 2014, 5, 735−740.

    13. [13]

      Pawlowka, B.; Biczak, R. Evaluation of the effect of tetraethylammonium bromide and chloride on the growth and development of terrestrial plants. Chemosphere 2016, 149, 24−33.  doi: 10.1016/j.chemosphere.2016.01.072

    14. [14]

      Kim, J.; Kim, S. State of the art in the application of QSAR techniques for predicting mixture toxicity in environmental risk assessment. SAR. QSAR. Environ. Res. 2015, 26, 41−59.  doi: 10.1080/1062936X.2014.984627

    15. [15]

      Qin, L. T.; Zhang, X.; Mo, L. Y.; Liang, Y. P.; Zeng, H. H. Further exploring linear concentration addition and independent action for predicting non-interactive mixture toxicity. Chin. J. Struct. Chem. 2017, 6, 886−896.

    16. [16]

      Qin, L. T.; Chen, Y. H.; Zhang, X.; Mo, L. Y.; Zeng, H. H.; Liang, Y. P. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide. Chemosphere 2018, 298, 122−129.

    17. [17]

      Zhang, S. N.; Su, L. M.; Zhang, X. J.; Chao, L.; Qin, W. C.; Zhang, D. M.; Liang, X. X.; Zhao, Y. H. Combined toxicity of nitro-substituted benzenes and zinc to photobacterium phosphoreum: evaluation and QSAR analysis. Int. J. Environ. Res. Public Health 2019, 16, 1041−1052.  doi: 10.3390/ijerph16061041

    18. [18]

      Qu, R. J.; Liu, H. X.; Feng, M. B.; Yang, X.; Wang, Z. Y. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones. J. Chem. Eng. Data 2012, 57, 2442−2455.  doi: 10.1021/je300407g

    19. [19]

      Liu, H. X.; Shi, J. Q.; Liu, H.; Wang, Z. Y. Improved 3D-QSPR analysis of the predictive octanoleair partition coefficients of hydroxylated and methoxylated polybrominated diphenyl ethers. Atmos. Environ. 2013, 77, 840−845.  doi: 10.1016/j.atmosenv.2013.05.068

    20. [20]

      Loewe, S. Effect of combinations: mathematical basis of problem. Arch. Exp. Pathol. Pharmakol. 1926, 313−326.

    21. [21]

      BLISS, C. I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 1939, 3, 585−615.

    22. [22]

      Saha, S.; Islam, M. K.; Shilpi, J. A.; Hasan, S. Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera's key metabolite Withaferin A. In Silico Pharmacol 2013, 1−11.

    23. [23]

      Aguayo-Ortiz, R.; Mendez-Lucio, O.; Medina-Franco, J. L.; Castillo, R.; Yepez-Mulia, L.; Hernandez-Luis, F.; Hernandez-Campos. Towards the identification of the binding site of benzimidazoles to β-tubulin of trichinella spiralis: insights from computational and experimental data. J. Mol. Graph. Model 2013, 41, 12−19.  doi: 10.1016/j.jmgm.2013.01.007

    24. [24]

      Khan, M. S.; Baig, M. H.; Ahmad, S.; Siddiqui, S. A.; Srivastava, A. K.; Srinivasan, K. V.; Ansari, I. A. Design, synthesis, evaluation and thermodynamics of 1-substituted pyridylimidazo[1, 5-a]pyridine derivatives as cysteine protease inhibitors. Plos One 2013, 8, e69982−8.  doi: 10.1371/journal.pone.0069982

    25. [25]

      Koca, M.; Yerdelen, K. O.; Anil, B.; Kasap, Z. Microwave-assisted synthesis, molecular docking, and cholinesterase inhibitory activities of new ethanediamide and 2-butenediamide analogues. Chem. Pharm. Bull. 2015, 3, 210−217.

    26. [26]

      Tong, J. B.; Wang, Y.; Lei, S.; Qin, S. S. Comprehensive 3D-QSAR and binding mode of DAPY inhibitors using R-group search and molecular docking. Chin. J. Struct. Chem. 2019, 1, 25−36.

    27. [27]

      Huang, C. S.; Tu, W. T.; Luo, M.; Shi, J. C. Molecular docking and design of novel heterodimers of donepezil and huperzine fragments as acetylcholinesterase inhibitors. Chin. J. Struc. Chem. 2016, 6, 839−848.

    28. [28]

      Li, F.; Xie, Q.; Li, X.; Li, N.; Chen, J.; Wang, Z.; Hao, C. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-beta: in vitro and in silico investigations. Environ. Health Perspect. 2010, 5, 602−606.

    29. [29]

      Liu, B. G.; Xiao, H. Z.; Li, J. Q.; Geng, S.; Ma, H. J.; Liang, G. Z. Interaction of phenolic acids with trypsin: experimental and molecular modeling studies. Food Chem. 2017, 228, 1−6.  doi: 10.1016/j.foodchem.2017.01.126

    30. [30]

      Mohammadzadeh-Aqhdash, H.; Dolatabadi, J. E. N.; Dehqhan, P.; Panahi-Azar, V.; Barzeqar, A. Multi-spectroscopic and molecular modeling studies of bovine serum albumin interaction with sodium acetate food additive. Food Chem. 2017, 228, 265−269.  doi: 10.1016/j.foodchem.2017.01.149

    31. [31]

      Ren, G. Y.; Sun, H.; Li, G.; Fan, J. L.; Wu, Y.; Cui, G. T. Molecular docking and muiltple spectroscopy investigation on the binding characteristics of aloe-emodin to pepsin. J. Mol. Struct. 2019, 1195, 369−377.  doi: 10.1016/j.molstruc.2019.05.084

    32. [32]

      Yu, Q.; Fan, L. P.; Duan, Z. H. Five individual polyphenols as tyrosinase inhibitors: inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chem. 2019, 297, 124910-10.  doi: 10.1016/j.foodchem.2019.05.184

    33. [33]

      Yu, Q.; Fan, L. P.; Duan, Z. H. Five individual polyphenols as tyrosinase inhibitors: inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chem. 2019, 297, 124910−10. (33) Jin, K. L.; Ye, J. M.; Lin, K. Observation on the effect of ATP bio-fluorescence method on hand hygiene test of medical staff. Zhejiang Med. Educ. 2015, 11, 991−992.

    34. [34]

      Bugno, A.; Almodovar, A. A. B.; Saes, D. P. S.; Awasthi, R.; Ghisleni, D. D.; Braga, M. D.; de Oliveira, W. A.; Dua, K.; Pinto, T. D. A. Evaluation of an amplified ATP bioluminescence method for rapid sterility testing of large volume parenteral. J. Pharm. Innov. 2019, 2, 152−158.

    35. [35]

      Zhang, Z. J.; Wang, C. X.; Zhang, L. R.; Meng, Q. T.; Zhang, Y. M.; Sun, F.; Xu, Y. D. Fast detection of Escherichia coli in food using nanoprobe and ATP bioluminescence technology. Anal. Methods 2017, 36, 5378−5387.

    36. [36]

      Liu, J. W.; Sun, C. H.; Liu, N. Luciferase and its application. Bull. Biol. 2004, 2, 15−17.

    37. [37]

      Yao, B.; Chai, C. Y.; Liu, H. F.; Liu, X. F.; Li, F.; Liu, G. Y. Testing the comprehensive toxicity of pesticides in drinking water based on luciferase luminescence system. Adm. Techn. Environ. 2010, 1, 37−40.

    38. [38]

      Weng, Z. Y.; Zhang, H. C.; Yao, B.; Shang, J.; Wang, Y. R.; Chai, C. Y.; Liu, G. Y. Comprehensive toxicity evaluation of several industrial pollutants based on luciferase luminescence detection system. Chin. J. Environ. Engin. 2012, 6, 2109−2112.

    39. [39]

      Chen, F.; Liu, S. S.; Duan, X. T.; Xiao, Q. F. Predicting the mixture effects of three pesticides by integrating molecular simulation with concentration addition modeling. RSC Adv. 2014, 61, 32256−32262.

    40. [40]

      Ge, H. L.; Liu, S. S.; Zhu, X. W.; Liu, H. L.; Wang, L. J. Predicting hormetic effects of ionic liquid mixtures on luciferase activity using the concentration addition model. Environ. Sci. Technol. 2011, 4, 1623−9.

    41. [41]

      Dou, R. N.; Liu, S. S.; Mo, L. Y.; Liu, H. L.; Deng, F. C. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos. Environ. Sci. Pollut. Res. 2011, 5, 734−42.

    42. [42]

      Zhu, X. W.; Liu, S. S.; Qin, L. T.; Chen, F.; Liu, H. L. Modeling non-monotonic dose-response relationships: model evaluation and hormetic quantities exploration. Ecotox. Environ. Safe. 2013, 89, 130−136.

    43. [43]

      Zhu, X. W.; Liu, S. S.; Ge, H. L.; Liu, Y. Comparison of two confidence intervals for dose-effect relationship. Chin. Environ. Sci. 2009, 2, 113−117.

    44. [44]

      Altenburger, R.; Walter, H.; Grote, M. What contributes to the combined effect of a complex mixture? Environ. Sci. Technol. 2004, 23, 6353−62.

    45. [45]

      Sundlow, J. A.; Fontaine, D. M.; Southworth, T. L.; Branchini, B. R.; Gulick, A. M. Crystal structure of firefly luciferase in a second catalytic conformation supports a domain alternation mechanism. Biochemistry 2012, 33, 6493−6495.

    46. [46]

      Discovery Studio, version 2.5. Accelrys Inc. : San Diego, CA, USA 2009.

    47. [47]

      Noori, A. R.; Hosseinkhani, S.; Ghiasi, P.; Heydari, A.; Akbari, J. Water-miscible ionic liquids as novel effectors for the firefly luciferase reaction. Eng. Life Sci. 2013, 2, 201−209.

    48. [48]

      Bedford, R.; LePage, D.; Hoffmann, R.; Kennedy, S.; Gutschenritter, T.; Bull, L.; Sujijantarat, N.; DiCesare, J. C.; Sheaff, R. J. Luciferase inhibition by a novel naphthoquinone. J. Photochem. Photobiol. B, Biol. 2012, 107, 55−64.

    49. [49]

      Berovic, N.; Parker, D. J.; Smith, M. D. An investigation of the reaction kinetics of luciferase and the effect of ionizing radiation on the reaction rate. Eur. Biophys. J. Biophys. Lett. 2009, 4, 42
       

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    3. [3]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    4. [4]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    5. [5]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    6. [6]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    7. [7]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    8. [8]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    9. [9]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    10. [10]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    11. [11]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    12. [12]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    13. [13]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    14. [14]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    15. [15]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    16. [16]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    17. [17]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    18. [18]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    19. [19]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    20. [20]

      Wei-Yu ZhouZi-Han XiNing-Ning DuLi YeMing-Hao JiangJin-Le HaoBin LinGuo-Dong YaoXiao-Xiao HuangShao-Jiang Song . Rapid discovery of two unprecedented meroterpenoids from Daphne altaica Pall. using molecular networking integrated with MolNetEnhancer and Network Annotation Propagation. Chinese Chemical Letters, 2024, 35(8): 109030-. doi: 10.1016/j.cclet.2023.109030

Metrics
  • PDF Downloads(2)
  • Abstract views(218)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return