Citation: Jian-Bo TONG, Lu-Yang WU, Shan LEI, Tian-Hao WANG, Yang-Min MA. Molecular Modeling Studies of 4-Hydroxyamino α-Pyranone Carboxamide Analogues as Hepatitis C Virus Inhibitor Using 3D-QSAR and Molecular Docking[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1135-1145. doi: 10.14102/j.cnki.0254-5861.2011-2539 shu

Molecular Modeling Studies of 4-Hydroxyamino α-Pyranone Carboxamide Analogues as Hepatitis C Virus Inhibitor Using 3D-QSAR and Molecular Docking

  • Corresponding author: Jian-Bo TONG, jianbotong@aliyun.com
  • Received Date: 19 July 2019
    Accepted Date: 20 November 2019

    Fund Project: the National Natural Science Foundation of China 21475081the Natural Science Foundation of Shaanxi Province 2019JM-237

Figures(7)

  • In this paper, 42 4-hydroxyamino α-pyranone carboxamide analogues as Hepatitis C Virus (HCV) inhibitor 3D-QSAR model was built based on Topomer CoMFA. The non-cross-validation (r2), cross-validation (q2), correlation coefficient of external validation (Qext2), non-cross validated standard error (SD), standard error of prediction (SDCV) and F are 0.909, 0.615, 0.967, 0.13, 0.28 and 37.287, respectively. The obtained Topomer CoMFA model has good estimation stability and prediction capability. Topomer Search was employed as a tool for virtual screening in lead-like compounds in the ZINC database. Then, 6 R1 groups and 4 R2 groups with higher contribution values were employed to alternately substitute for the R1 and R2 of the template compound 21 with the highest bioactivity. As a result, 22 new molecules with higher activity than that of the template molecule were designed successfully. The Topomer Search technology could be effectively applied to screen and design new 4-hydroxyamino α-pyranone carboxamide analogues. The molecular docking method was also used to study the interactions of these drugs by docking the ligands into HCV active site, which revealed the likely bioactive conformations. This study showed extensive interactions between the 4-hydroxyamino α-pyranone carboxamide analogues and the active sites of HCV (residues TYR466, GLN384, TYR383 and ASP335). The design of potent new inhibitors of HCV can get useful insights from these results.
  • 加载中
    1. [1]

      Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989, 244, 359−362.  doi: 10.1126/science.2523562

    2. [2]

      Hanafiah, K. M.; Groeger, J.; Flaxman, A. D.; Wiersma, S. T. Global epidemiology of hepatitis C virus infection: New estimates of age-specific antibody to HCV seroprevalence. Hepatology. 2013, 57, 1333−1342.  doi: 10.1002/hep.26141

    3. [3]

      Lavanchy, D. The global burden of hepatitis C. Liver. Int. 2009, 29, 74−81.

    4. [4]

      Saito, I.; Miyamura, T.; Ohbayashi, A.; Harada, H.; Katayama, T.; Kikuchi, S.; Watanabe, Y.; Koi, S.; Onji, M.; Ohta, Y. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. P. Natl. Acad. Sci. USA. 1990, 87, 6547−6549.  doi: 10.1073/pnas.87.17.6547

    5. [5]

      Lu, W.; Xue, Y. Prediction of hepatitis C virus non-structural proteins 5B polymerase inhibitors using machine learning methods. Acta. Phys-Chim. Sin. 2011, 27, 1407−1416.  doi: 10.3866/PKU.WHXB20110608

    6. [6]

      Aronoff-Spencer, E.; Venkatesh, A. G.; Sun, A.; Brickner, H.; Looney, D.; Hall, D. A. Detection of hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens. Bioelectron. 2016, 86, 690−696.  doi: 10.1016/j.bios.2016.07.023

    7. [7]

      Fauvelle, C.; Lepiller, Q.; Felmlee, D. J.; Fofana, I.; Habersetzer, F.; Stoll-Keller, F.; Baumert, T. F.; Fafi-Kremer, S. Hepatitis C virus vaccines-progress and perspectives. Microb. Pathog. 2013, 58, 66−72.  doi: 10.1016/j.micpath.2013.02.005

    8. [8]

      Law, L. M. J.; Landi, A.; Magee, W. C.; Tyrrell, D. L.; Houghton, M. Progress towards a hepatitis C virus vaccine. Emerg. Microbes. Infec. 2013, 2, e79−6.

    9. [9]

      Haudecoeur, R.; Peuchmaur, M.; Ahmed-Belkacem, A.; Pawlotsky, J. M.; Boumendjel, A. Structure-activity relationships in the development of allosteric hepatitis C virus RNA-dependent RNA polymerase inhibitors: ten years of research. Med. Res. Rev. 2013, 33, 934−984.  doi: 10.1002/med.21271

    10. [10]

      Summa, V.; Petrocchi, A.; Matassa, V. G.; Taliani, M.; Laufer, R.; De Francesco, R.; Altamura, S.; Pace, P. HCV NS5b RNA-dependent RNA polymerase inhibitors:   from α, γ-diketoacids to 4, 5-dihydroxypyrimidine or 3-methyl-5-hydroxypyrimidinonecarboxylic acids, design and synthesis. J. Med. Chem. 2004, 47, 5336−5339.  doi: 10.1021/jm0494669

    11. [11]

      Chen, K. X.; Njoroge, F. G. A review of HCV protease inhibitors. Curr. Opin. Invest. Dr. 2009, 10, 821−837.

    12. [12]

      Watkins, W. J.; Ray, A. S.; Chong, L. S. HCV NS5B polymerase inhibitors. Curr. Opin. Drug. Disc. 2010, 13, 441−465.

    13. [13]

      Legrand-Abravanel, F.; Nicot, F.; Izopet, J. New NS5B polymerase inhibitors for hepatitis C. Expert. Opin. Inv. Drug. 2010, 19, 963−975.  doi: 10.1517/13543784.2010.500285

    14. [14]

      Gao, M.; Nettles, R. E.; Belema, M.; Snyder, L. B.; Nguyen, V. N.; Fridell, R. A.; Serrano-Wu, M. H.; Langley, D. R.; Sun, J. H.; O'Boyle, D. R.; Lemm, J. A.; Wang, C. F.; Knipe, J. O.; Chien, C.; Colonno, R. J.; Grasela, D. M.; Meanwell, N. A.; Hamann, L. G. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature. 2010, 465, 96−100.  doi: 10.1038/nature08960

    15. [15]

      Shi, J. C.; Tu, W. T.; Luo, M.; Huang, C. S. Structural insight into the design on oleanolic acid derivatives as potent protein tyrosine phosphatase 1B inhibitors. Chin. J. Struc. Chem. 2017, 36, 1063−1076.

    16. [16]

      Tong, J. B.; Wang, Y.; Lei, S.; Qin, S. S. Comprehensive 3D-QSAR and binding mode of DAPY inhibitors using R-group search and molecular docking. Chin. J. Struct. Chem. 2019, 38, 25−36.

    17. [17]

      Li, W. L.; Xiao, F. Q.; Zhou, M. M.; Jiang, X. J.; Liu, J.; Si, H. Z.; Xie, M.; Ma, X. T.; Duan, Y. B.; Zhai, H. L. 3D-QSAR study and design of 4-hydroxyamino α-pyranone carboxamide analogues as potential anti-HCV agents. Chem. Phys. Lett. 2016, 661, 36−41.  doi: 10.1016/j.cplett.2016.08.042

    18. [18]

      Clark, M.; Iii, R. D. C.; Opdenbosch, N. V. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 1989, 10, 982−1012.  doi: 10.1002/jcc.540100804

    19. [19]

      Sun J. Y.; Wang, J. C.; Mei, H. QSAR and pharmacophore studies of thiazolidine-4-carboxylic acid derivatives as novel influenza neuraminidase inhibitors using HQSAR, Topomer CoMFA and CoMSIA. Chin. . J. Struc. Chem. 2013, 32, 744−750.

    20. [20]

      Tong, J. B.; Bai, M.; Zhao, X. Application of an R-group search technique in the molecular design of HIV-1 integrase inhibitors. J. SERB. CHEM. SOC. 2016, 81, 383−394.  doi: 10.2298/JSC150826003T

    21. [21]

      Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109−130.  doi: 10.1016/S0169-7439(01)00155-1

    22. [22]

      Bohm, M.; St rzebecher, J.; Klebe, G. Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J. Med. Chem. 1999, 42, 458−477.  doi: 10.1021/jm981062r

    23. [23]

      Golbraikh, A.; Shen, M.; Xiao, Z.; Xiao, Y. D.; Lee, K. H.; Tropsha, A. Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aid. Mol. Des. 2003, 17, 241−253.

    24. [24]

      Tong, J. B.; Qin, S. S.; Lei, S.; Wang, Y. A 3D-QSAR study of HIV-1 integrase inhibitors using RASMS and Topomer CoMFA. Chin. J. Struc. Chem. 2019, 38, 867−881.

    25. [25]

      Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012, 52, 1757−1768.

    26. [26]

      Miao, X.; Liang, G. Z. Molecular design of PTH derivatives as tau protein inhibitors using R-Group search technology. Chem. J. Chin. . U. 2012, 33, 2263−2268.

    27. [27]

      Tong, J. B.; Wang, Y.; Lei, S.; Qin S. S. 3D-QSAR and docking studies of 1, 3, 4-thiazolidinone derivatives using R-Group search and surflex-dock. Chin. J. Struc. Chem. 2019, 38, 464−475.

    28. [28]

      Halder, A. K.; Amin, S. A.; Jha, T.; Gayen, S. Insight into the structural requirements of pyrimidine-based phosphodiesterase 10A (PDE10A) inhibitors by multiple validated 3D-QSAR approaches. Sar. QSAR Environ. Res. 2017, 28, 253−273.

  • 加载中
    1. [1]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    2. [2]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    3. [3]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    4. [4]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    5. [5]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    6. [6]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    7. [7]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    8. [8]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    9. [9]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    10. [10]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    11. [11]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    12. [12]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    13. [13]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    14. [14]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    15. [15]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    16. [16]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    17. [17]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    18. [18]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    19. [19]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    20. [20]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

Metrics
  • PDF Downloads(1)
  • Abstract views(174)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return