Citation: Xiao-Lan ZENG, Xiao-Zi SUN, He-Yu WANG, Yong-Sheng YU. Computational Study on OH Addition Reactions of Three Sulfonamides in Aqueous Solution[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 48-56. doi: 10.14102/j.cnki.0254-5861.2011-2509 shu

Computational Study on OH Addition Reactions of Three Sulfonamides in Aqueous Solution

  • Corresponding author: Xiao-Lan ZENG, zxl6688@163.com
  • Received Date: 24 June 2019
    Accepted Date: 19 September 2019

    Fund Project: the National Natural Science Foundation of China 21876143Science and Technology Program of Henan Province 172102210088

Figures(2)

  • OH addition reactions of cationic, neutral and anionic forms of three sulfonamides (sulfamethoxazole, sulfadiazine and sulfapyridine) in aqueous solution were theoretically studied using density functional theory (DFT) method at the M06-2X/6-311+G(3df, 2p) level. Transition state theory was applied to estimate the secondary rate constants for these elementary reactions. The obtained results indicate that OH addition reactions of sulfonamides can take place spontaneously at standard conditions. The anionic form of three sulfonamides has the highest addition activity, while the corresponding cationic form is the most inactive addition reagent. The benzene ring of neutral forms of three sulfonamides is always a more favorable site for OH radical addition than the oxazole, pyrimidine or pyridine ring. C(3) or (and) C(5) atoms of benzene ring are the most favorable positions for OH addition occurring in benzene ring. Although the water solvent has no remarkable effect on OH addition reactions of neutral sulfonamides, it exerts a significant adverse influence on OH addition reactions of ionic sulfonamides.
  • 加载中
    1. [1]

      Managaki, S.; Murata, A.; Takada, H.; Tuyen, B. C.; Chiem, N. H. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environ. Sci. Technol. 2007, 41, 8004−8010.  doi: 10.1021/es0709021

    2. [2]

      Luo, Y.; Xu, L. Q.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P. J. J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin. Environ. Sci. Technol. 2011, 45, 1827−1833.  doi: 10.1021/es104009s

    3. [3]

      Baran, W.; Adamek, E.; Ziemianska, J.; Sobczak, A. Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater. 2011, 196, 1−15.  doi: 10.1016/j.jhazmat.2011.08.082

    4. [4]

      Zhang, R. J.; Zhang, G.; Zheng, Q.; Tang, J. H.; Chen, Y. J.; Xu, W. H.; Zou, Y. D.; Chen, X. X. Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge. Ecotox. Environ. Safe. 2012, 80, 208−215.  doi: 10.1016/j.ecoenv.2012.03.002

    5. [5]

      Shimizu, A.; Takada, H.; Koike, T.; Takeshita, A.; Saha, M.; Nakada, N.; Murata, A.; Suzuki, T.; Suzuki, S.; Chiem, N. H.; Tuyen, B. C.; Viet, P. H.; Siringan, M. A; Kwan, C.; Zakaria, M. P.; Reungsang, A. Ubiquitous occurrence of sulfonamides in tropical Asian waters. Sci. Total Environ. 2013, 452−453, 108−115.

    6. [6]

      Bahnmüller, S.; Gunten, U. V.; Canonica, S. Sunlight-induced transformation of sulfadiazine and sulfamethoxazole in surface waters and wastewater effluents. Water Res. 2014, 57, 183−192.  doi: 10.1016/j.watres.2014.03.019

    7. [7]

      Ma, Y.; Li, M.; Wu, M.; Li, Z.; Liu, X. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge. Sci. Total Environ. 2015, 518, 498−506.

    8. [8]

      Yao, L.; Wang, Y.; Tong, L.; Deng, Y.; Li, Y.; Gan, Y.; Guo, W.; Dong, C.; Duan, Y.; Zhao, K. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: a case study at Jianghan Plain, central China. Ecotox. Environ. Safe. 2017, 135, 236−242.  doi: 10.1016/j.ecoenv.2016.10.006

    9. [9]

      Baran, W.; Sochacka, J.; Wardas, W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 2006, 65, 1295−1299.  doi: 10.1016/j.chemosphere.2006.04.040

    10. [10]

      Huang, D. J.; Hou, J. H.; Kuo, T. F.; Lai, H. T. Toxicity of the veterinary sulfonamide antibiotic sulfamonomethoxine to five aquatic organisms. Environ. Toxicol. Pharmacol. 2014, 38, 874−880.  doi: 10.1016/j.etap.2014.09.006

    11. [11]

      Bialk-Bielinska, A.; Caban, M.; Pieczynska, A.; Stepnowski, P.; Stolte, S. Mixture toxicity of six sulfonamides and their two transformation products to green algae Scenedesmus vacuolatus and duckweed Lemna minor. Chemosphere 2017, 173, 542−550.  doi: 10.1016/j.chemosphere.2017.01.035

    12. [12]

      Adams, C.; Wang, Y.; Loftin, K.; Meyer, M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 2002, 128, 253−260.  doi: 10.1061/(ASCE)0733-9372(2002)128:3(253)

    13. [13]

      Huber, M. M.; Korhonen, S.; Ternes, T. A.; Von, G. U. Oxidation of pharmaceuticals during water treatment with chlorine dioxide. Water Res. 2005, 39, 3607−3617.  doi: 10.1016/j.watres.2005.05.040

    14. [14]

      Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 2016, 153, 365−385.  doi: 10.1016/j.chemosphere.2016.03.083

    15. [15]

      Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009, 35, 402−417.  doi: 10.1016/j.envint.2008.07.009

    16. [16]

      Mika, S.; Mohamed, C. N.; Anu, M. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: a comprehensive review. J. Environ. Manage. 2018, 208, 56−76.  doi: 10.1016/j.jenvman.2017.12.009

    17. [17]

      Abellán, M. N.; Bayarri, B.; Giménez, J.; Costa. J. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B Environ. 2007, 74, 233−241.  doi: 10.1016/j.apcatb.2007.02.017

    18. [18]

      Yang, H.; Li, G. Y.; An, T. C.; Gao, Y. P.; Fu, J. M. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of sulfa drugs. Catal. Today 2010, 153, 200−207.  doi: 10.1016/j.cattod.2010.02.068

    19. [19]

      Długosz, M.; Żmudzki, P.; Kwiecień, A.; Szczubiałka, K.; Krzek, J.; Nowakowska, M. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst. J. Hazard. Mater. 2015, 298, 146−153.  doi: 10.1016/j.jhazmat.2015.05.016

    20. [20]

      Zhu, W. Y.; Sun, F. Q.; Goei, R.; Zhou, Y. Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Appl. Catal. B Environ. 2017, 207, 93−102.  doi: 10.1016/j.apcatb.2017.02.012

    21. [21]

      Mirzaei, A.; Yerushalmi, L.; Chen, Z.; Haghighat, F.; Guo, J. B. Enhanced photocatalytic degradation of sulfamethoxazole by zinc oxide photocatalyst in the presence of fluoride ions: optimization of parameters and toxicological evaluation. Water Res. 2018, 132, 241−251.  doi: 10.1016/j.watres.2018.01.016

    22. [22]

      Trovó, A. G.; Nogueira, R. F. P.; Agüera, A.; Sirtori, C.; Fernandez-Alba, A. R. Photodegradation of sulfamethoxazole in various aqueous media: persistence, toxicity and photoproducts assessment. Chemosphere 2009, 77, 1292−1298.  doi: 10.1016/j.chemosphere.2009.09.065

    23. [23]

      Du, J. S.; Guo, W. Q.; Wang, H. Z.; Yin, R. L.; Zheng, H. S.; Feng, X. C.; Che, D.; Ren, N. Q. Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2: kinetics, mechanisms, and pathways. Water Res. 2018, 138, 323−332.  doi: 10.1016/j.watres.2017.12.046

    24. [24]

      Ge, L. K.; Zhang, P.; Halsall, C.; Li, Y. Y.; Chen, C. E.; Li, J.; Sun, H. L.; Yao, Z. W. The importance of reactive oxygen species on the aqueous phototransformation of sulfonamide antibiotics: kinetics, pathways, and comparisons with direct photolysis. Water Res. 2019, 149, 243−250.  doi: 10.1016/j.watres.2018.11.009

    25. [25]

      Shah, S.; Hao, C. Quantum chemical investigation on photodegradation mechanisms of sulfamethoxypyridazine with dissolved inorganic matter and hydroxyl radical. J. Environ. Sci. 2017, 57, 85−92.  doi: 10.1016/j.jes.2016.09.023

    26. [26]

      Yu, H.; Chen, J. W.; Xie, H. B.; Ge, P.; Kong, Q. W.; Luo, Y. Ferrate(VI) initiated oxidative degradation mechanisms clarified by DFT calculations: a case for sulfamethoxazole. Environ. Sci. Proc. Impacts 2017, 19, 370−378.  doi: 10.1039/C6EM00521G

    27. [27]

      Zhang, H. M.; Wei, X. X.; Song, X. D.; Shah, S.; Chen, J. W.; Liu, J. H.; Hao, C.; Chen, Z. F. Photophysical and photochemical insights into the photodegradation of sulfapyridine in water: a joint experimental and theoretical study. Chemosphere 2018, 191, 1021−1027.  doi: 10.1016/j.chemosphere.2017.10.036

    28. [28]

      Lee, J. E.; Choi, W.; Mhin, B. J.; Balasubramanian, K. Theoretical study on the reaction of OH radicals with polychlorinated dibenzo-p-dioxins. J. Phys. Chem. A 2004, 108, 607−614.  doi: 10.1021/jp036084q

    29. [29]

      Altarawneh, M.; Kennedy, E. M.; Dlugogorski, B. Z.; Mackie, J. C. Computational study of the oxidation and decomposition of dibenzofuran under atmospheric conditions. J. Phys. Chem. A 2008, 112, 6960−6967.  doi: 10.1021/jp800093j

    30. [30]

      Zeng, X. L.; Zhang, X. L.; Wang, Z. Y. Theoretical study on the OH-initiated oxidation mechanism of polyfluorinated dibenzo-p-dioxins under the atmospheric conditions. Chemosphere 2016, 144, 2036−2043.  doi: 10.1016/j.chemosphere.2015.10.106

    31. [31]

      Zeng, X. L.; Chen, J.; Qu, R. J.; Pan, X. X.; Wang, Z. Y. The OH-initiated atmospheric chemical reactions of polyfluorinated dibenzofurans and polychlorinated dibenzofurans: a comparative theoretical study. Chemosphere 2017, 168, 10−17.  doi: 10.1016/j.chemosphere.2016.10.062

    32. [32]

      Wang, Y.; Zeng, X. L. OH-initiated atmospheric oxidation mechanism of 1-chloropyrene: a theoretical study. Comput. Theoret. Chem. 2017, 1115, 144−150.  doi: 10.1016/j.comptc.2017.06.011

    33. [33]

      Qu, R. J.; Liu, H. X.; Feng, M. B.; Yang, X.; Wang, Z. Y. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones. J. Chem. Eng. Data 2012, 57, 2442−2455.  doi: 10.1021/je300407g

    34. [34]

      Shi, J. Q.; Qu, R. J.; Feng, M. B.; Wang, X. H.; Wang, L. S.; Yang, S. G.; Wang, Z. Y. Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations. Environ. Sci. Technol. 2015, 49, 4209−4217.  doi: 10.1021/es505111r

    35. [35]

      Qu, R. J.; Li, C. G.; Liu, J. Q.; Xiao, R. Y.; Pan, X. X.; Zeng, X. L.; Wang, Z. Y.; Wu, J. C. Hydroxyl radical based photocatalytic degradation of halogenated organic contaminants and paraffin on silica gel. Environ. Sci. Technol. 2018, 52, 7220−7229.  doi: 10.1021/acs.est.8b00499

    36. [36]

      Zhao, J. M.; Yuan, Y.; Zhou, R. J. A molecular mechanism of Fenton oxidation degradation of m-xylene. Chin. J. Struct. Chem. 2018, 37, 1363−1370.

    37. [37]

      Cheng, X. L. Absorption and emission spectra of p-phenylbenzoyl methanthiol: methanol effect based on M06-2X calculations. Chin. J. Struct. Chem. 2019, 38, 476−482.

    38. [38]

      Zhang, L.; Chen, R.; Liang, G. M. Theoretical studies on the aminolysis of ester: effects of the catalysis and substituent to the reaction of methyl indole-3-acetate with ammonia. Chin. J. Struct. Chem. 2019, 38, 855−866.

    39. [39]

      Zhou, J.; Chen, J. W.; Liang, C. H.; Xie, Q.; Wang, Y. N.; Zhang, S. Y.; Qiao, X. L.; Li, X. H. Quantum chemical investigation on the mechanism and kinetics of PBDE photooxidation by OH: a case study for BDE-15. Environ. Sci. Technol. 2011, 45, 4839−4845.  doi: 10.1021/es200087w

    40. [40]

      Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215−241.  doi: 10.1007/s00214-007-0310-x

    41. [41]

      Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117−129.  doi: 10.1016/0301-0104(81)85090-2

    42. [42]

      Miertuš, S.; Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 1982, 65, 239−245.  doi: 10.1016/0301-0104(82)85072-6

    43. [43]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. Fox, D. J. Gaussian Inc., Wallingford, CT 2009, Gaussian 09, Revision A. 2.

    44. [44]

      Pilling, M. J.; Seakins, P. W. Reaction Kinetics. Oxford University Press Inc., New York 1999.

    45. [45]

      Haag, W. R.; Yao, C. C. D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 1992, 26, 1005−1013.  doi: 10.1021/es00029a021

    46. [46]

      Monod, A.; Poulain, L.; Grubert, S.; Voisin, D.; Wortham, H. Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, structure-activity relationships and atmospheric implications. Atmos. Environ. 2005, 39, 7667−7688.  doi: 10.1016/j.atmosenv.2005.03.019

    47. [47]

      Olariu, R. I.; Klotz, B.; Barnes, I.; Becker, K. H.; Mocanu, R. FT-IR study of the ring-retaining products from the reaction of OH radicals with phenol, o-, m-, and p-cresol. Atmos. Environ. 2002, 36, 3685−3697.  doi: 10.1016/S1352-2310(02)00202-9

    48. [48]

      Mezyk, S. P.; Neubauer, T. J.; Cooper, W. J.; Peller, J. R. Free-radical-induced oxidative and reductive degradation of sulfa drugs in water: absolute kinetics and efficiencies of hydroxyl radical and hydrated electron reactions. J. Phys. Chem. A 2007, 111, 9019−9024.  doi: 10.1021/jp073990k

  • 加载中
    1. [1]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    2. [2]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    3. [3]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    4. [4]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    5. [5]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    6. [6]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    7. [7]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    8. [8]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    9. [9]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    10. [10]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    11. [11]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    12. [12]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    13. [13]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    14. [14]

      Jindan ZhangZhenghong LiChi LiMengqi ZhuShicheng TangKaicong CaiZhibin ChengChulong LiuShengchang XiangZhangjing Zhang . Revealing a new doping mechanism of spiro-OMeTAD with tBP participation through the introduction of radicals into HTM. Chinese Chemical Letters, 2025, 36(3): 110046-. doi: 10.1016/j.cclet.2024.110046

    15. [15]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    16. [16]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    17. [17]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    18. [18]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    19. [19]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    20. [20]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

Metrics
  • PDF Downloads(2)
  • Abstract views(317)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return