Citation: Jian-Bo TONG, Tian-Hao WANG, Ying-Ji WU, Yi FENG. QSAR and Docking Studies of Thiazolidine-4-carboxylic Acid Derivatives as Neuraminidase Inhibitors[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 651-661. doi: 10.14102/j.cnki.0254-5861.2011-2508 shu

QSAR and Docking Studies of Thiazolidine-4-carboxylic Acid Derivatives as Neuraminidase Inhibitors

  • Corresponding author: Jian-Bo TONG, jianbotong@aliyun.com
  • Received Date: 21 June 2019
    Accepted Date: 20 November 2019

    Fund Project: the National Natural Science Funds of China 21475081the Natural Science Foundation of Shaanxi Province 2019JM-237

Figures(3)

  • In order to understand the chemical-biological interactions governing their activities toward neuraminidase (NA), QSAR models of 28 thiazolidine-4-carboxylic acid derivatives with inhibitory influenza A virus were developed. Here a quantitative structure activity relationship (QSAR) model was built by three-dimensional holographic atomic vector field (3D-HoVAIF) and multiple linear regression (MLR). The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations. The correlation coefficient (R2) of established MLR model was 0.984, and the cross-validated correlation coefficient (Q2) of MLR model was 0.947. Furthermore, the cross-validated correlation coefficient for the test set (Qext2) was 0.967. The binding mode pattern of the compounds to the binding site of integrase enzyme was confirmed by docking studies. The results of present study indicated that this model can aid in designing more potent neuraminidase inhibitors.
  • 加载中
    1. [1]

      Chen, Y. Q.; Wohlbold, T. J.; Zheng, N. Y. Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 2018, 173, 417−429.  doi: 10.1016/j.cell.2018.03.030

    2. [2]

      Wang, X. L.; Jiang, H.; Wu, P. Epidemiology of avian influenza A H7N9 virus in human beings across five epidemics in mainland China, 2013-17: an epidemiological study of laboratory-confirmed case series. Lancet Infect Dis. 2017, 17, 822−832.  doi: 10.1016/S1473-3099(17)30323-7

    3. [3]

      Zhao, H. Y.; Chen, Z. L. Screening of neuraminidase inhibitors from traditional Chinese medicines by integrating capillary electrophoresis with immobilized enzyme microreactor. J. Chromatogr. A 2014, 1340, 139−145.  doi: 10.1016/j.chroma.2014.03.028

    4. [4]

      Anne Moscona, M. D. Neuraminidase inhibitors for influenza. New Engl. J. Med. 2005, 353, 1363−1373.  doi: 10.1056/NEJMra050740

    5. [5]

      Chen, B. Y.; Zhang, T.; Bond, T. Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: a review of methods and resources. J. Hazard. Mater. 2015, 299, 260−279.  doi: 10.1016/j.jhazmat.2015.06.054

    6. [6]

      Bhole, R. P.; Bhusari, K. P. Synthesis, antihypertensive activity, and 3D-QSAR studies of some new p-hydroxybenzohydrazide derivatives. Arch. Pharm. 2011, 344, 119−134.  doi: 10.1002/ardp.201000008

    7. [7]

      Sun, J. Y.; Wang, J. C.; Mei, H. QSAR and pharmacophore studies of thiazolidine-4-carboxylic acid derivatives as novel influenza neuraminidase inhibitors using HQSAR, Topomer CoMFA and CoMSIA. Chin. J. Struc. Chem. 2013, 32, 744−750.

    8. [8]

      Van Damme, S.; Bultinck, P. 3D QSAR based on conceptual DFT molecular fields: antituberculotic activity. J. Mol. Struc.-Theochem. 2010, 943, 83−89.  doi: 10.1016/j.theochem.2009.10.031

    9. [9]

      Tong, J. B.; Liu, S. L. Three-dimensional holographic vector of atomic interaction field applied in QSAR of anti-HIV HEPT analogues. QSAR Comb. Sci. 2008, 27, 330−337.  doi: 10.1002/qsar.200710076

    10. [10]

      Tong, J. B.; Chen, Y.; Liu, S. L. QSAR studies of antituberculosis drug using three-dimensional structure descriptors. Med. Chem. Res. 2013, 22, 4946−4952.  doi: 10.1007/s00044-013-0502-y

    11. [11]

      Tong, J. B.; Che, T.; Li, Y. F. A descriptor of amino acids: SVRG and its application to peptide quantitative structure-activity relationship. SAR QSAR Environ. Res. 2011, 22, 611−620.  doi: 10.1080/1062936X.2011.604099

    12. [12]

      Levitt, M. Protein folding by restrained energy minimization and molecular dynamics. J. Mol. Biol. 1983, 170, 723−764.  doi: 10.1016/S0022-2836(83)80129-6

    13. [13]

      Levitt, M.; Perutz, M. F. Aromatic rings act as hydrogen bond acceptors. J. Mol. Biol. 1988, 201, 751−754.  doi: 10.1016/0022-2836(88)90471-8

    14. [14]

      Hahn, M. Receptor surface models. 1. Definition and construction. J. Med. Chem. 1995, 38, 2080−2090.  doi: 10.1021/jm00012a007

    15. [15]

      Kellogg, G. E.; Semus, S. F.; Abraham, D. J. HINT: a new method of empirical hydrophobic field calculation for CoMFA. J. Comput. Aid. Mol. Des. 1991, 5, 545−552.  doi: 10.1007/BF00135313

    16. [16]

      Wireko, F. C.; Kellogg, G. E.; Abraham, D. J. Allosteric modifiers of hemoglobin. 2. Crystallographically determined binding sites and hydrophobic binding/interaction analysis of novel hemoglobin oxygen effectors. J. Med. Chem. 1991, 34, 758−767.  doi: 10.1021/jm00106a042

    17. [17]

      Tong, J. B.; Zhong, L.; Zhao, X. Quantitative structure-activity relationship studies of diarylpyrimidine derivatives as anti-HIV drugs using new three-dimensional structure descriptors. Med. Chem. Res. 2014, 23, 1634−1642.  doi: 10.1007/s00044-013-0770-6

    18. [18]

      Kellogg, G. E.; Abraham, D. J. Key, lock, and locksmith: complementary hydropathic map predictions of drug structure from a known receptor-receptor structure from known drugs. J. Mol. Graph. 1992, 10, 212−217.  doi: 10.1016/0263-7855(92)80070-T

    19. [19]

      Tong, J. B.; Chen, Y.; Liu, S. L. A novel 3D molecular structural characterization method applied in QSAR study. Rev. Chim.-Bucharest. 2013, 64, 707−712.

    20. [20]

      Li, Z. H.; Chen, G.; Chen, Z. T. Three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) for the QSPR/QSAR of polychlorinated naphthalenes. Chin. J. Struct. Chem. 2012, 31, 345−352.

    21. [21]

      Shu, M.; Zhang, Y. R.; Tian, F. F. Molecular docking and 3D-QSAR research of biphenyl carboxylic acid MMP-3 inhibitors. Chin. J. Struct. Chem. 2012, 31, 443−451.

    22. [22]

      Liao, L. M.; Huang, X.; Li, J. F. Structural characterization and acute toxicity simulation for nitroaromatic compounds. Chin. J. Struct. Chem. 2016, 35, 449−456.

    23. [23]

      Huey, R.; Morris, G. M.; Olson, A. J. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 2007, 28, 1145−1152.  doi: 10.1002/jcc.20634

    24. [24]

      Liu, Y.; Jing, F. B.; Xu, Y. Y. Design, synthesis and biological activity of thiazolidine-4-carboxylic acid derivatives as novel influenza neuraminidase inhibitors. Bioorgan. Med. Chem. 2011, 19, 2342−2348.  doi: 10.1016/j.bmc.2011.02.019

    25. [25]

      Golbraikh, Alexander; Tropsha, Alexander. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269−276.  doi: 10.1016/S1093-3263(01)00123-1

    26. [26]

      Tong, J. B.; Wang, Y.; Lei, S. 3D-QSAR and docking studies of 1,3,4-thiazolidinone derivatives using R-group search and surflex-dock. Chin. J. Struct. Chem. 2019, 38, 464−475.

  • 加载中
    1. [1]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    2. [2]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    3. [3]

      Zhaoyong KangShen LiYan LiJingfeng SongYangrui PengYihua Chen . Small molecular inhibitors and degraders targeting STAT3 for cancer therapy: An updated review (from 2022 to 2024). Chinese Chemical Letters, 2025, 36(7): 110447-. doi: 10.1016/j.cclet.2024.110447

    4. [4]

      Futao YiYing LiuYao ChenJiahao ZhuQuanguo HeChun YangDongge MaJun Liu . Dual S-Scheme g-C3N4/Ag3PO4/g-C3N5 photocatalysts for removal of tetracycline pollutants through enhanced molecular oxygen activation. Chinese Chemical Letters, 2025, 36(8): 110544-. doi: 10.1016/j.cclet.2024.110544

    5. [5]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    6. [6]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    7. [7]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    8. [8]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    9. [9]

      Tianjun NiHui ZhangLiping ZhouRoujie MaYanyu WangZhijun YangDan LuoNithima KhaorapapongXingtao XuYusuke YamauchiDong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659

    10. [10]

      Qi ZhangBin HanYucheng JinMingrun LiEnhui ZhangJianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330

    11. [11]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    12. [12]

      Jingwen WangPeizhang ZhaoMengmeng LiJun LiYunfeng Lin . Remedying infectious bone defects via 3D printing technology. Chinese Chemical Letters, 2025, 36(9): 110686-. doi: 10.1016/j.cclet.2024.110686

    13. [13]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    14. [14]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    15. [15]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    16. [16]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    17. [17]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    18. [18]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    19. [19]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    20. [20]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

Metrics
  • PDF Downloads(2)
  • Abstract views(896)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return