Citation: Hui-Min LIN, Ao LI, Qi-Min XIAO, Xu-Feng LIU, Yu-Long LI, Xing-Hai LIU, Zhong-Qing JIANG. Synthesis, Characterization and Electrochemistry of 1, 2-Bis(diphenylphosphino)benzene-chelated Diiron Ethane-1, 2-dithiolate Tetracarbonyl Complex[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 927-932. doi: 10.14102/j.cnki.0254-5861.2011-2502
-
In this paper, a novel diiron ethane-1, 2-dithiolate complex [Fe2(CO)4{κ2-(Ph2P)2(1, 2-C6H4)}(μ-SCH2CH2S)] has been prepared and structurally characterized. Treatment of the parent complex [Fe2(CO)6(μ-SCH2CH2S)] with 1 equivalent of 1, 2-bis(diphenylphosphino)benzene and Me3NO∙2H2O as the oxidative agent gave the title complex in good yield. The title complex has been characterized by elemental analysis, IR, 1H NMR, 31P{1H} NMR, 13C{1H} NMR spectroscopy, and X-ray crystallography. X-ray crystal structure of the title complex contains a butterfly diiron cluster with a bridging ethane-1, 2-dithiolate, four terminal carbonyls, and a chelating 1, 2-bis(diphenylphosphino)benzene. In addition, electrochemical studies revealed that the title complex can catalyze the reduction of protons to H2 in the presence of acetic acid.
-
-
[1]
Tard, C.; Pickett, C. J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 2009, 109, 2245‒2274. doi: 10.1021/cr800542q
-
[2]
Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081‒4148. doi: 10.1021/cr4005814
-
[3]
Rauchfuss, T. B. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc. Chem. Res. 2015, 48, 2107‒2116. doi: 10.1021/acs.accounts.5b00177
-
[4]
Li, Y.; Rauchfuss, T. B. Synthesis of diiron(I) dithiolato carbonyl complexes. Chem. Rev. 2016, 116, 7043‒7077. doi: 10.1021/acs.chemrev.5b00669
-
[5]
Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from clostridium pasteurianum to 1.8 angstrom resolution. Science 1998, 282, 1853‒1858. doi: 10.1126/science.282.5395.1853
-
[6]
Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 1999, 7, 13‒23. doi: 10.1016/S0969-2126(99)80005-7
-
[7]
Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Carbon monoxide and cyanide ligands in a classical organometallic complex model for Fe-only hydrogenase. Angew. Chem. Int. Ed. 1999, 38, 3178‒3180. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4
-
[8]
Lawrence, J. D.; Li, H.; Rauchfuss, T. B.; Bénard, M.; Rohmer, M. M. Diiron azadithiolates as models for the iron-only hydrogenase active site: synthesis, structure, and stereoelectronics. Angew. Chem. Int. Ed. 2001, 40, 1768‒1771. doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E
-
[9]
Fan, H. J.; Hall, M. B. A capable bridging ligand for Fe-only hydrogenase: density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen. J. Am. Chem. Soc. 2001, 123, 3828‒3829. doi: 10.1021/ja004120i
-
[10]
Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. First generation analogues of the binuclear site in the Fe-only hydrogenases: Fe2(μ-SR)2(CO)4(CN)22‒. J. Am. Chem. Soc. 1999, 121, 9736‒9737. doi: 10.1021/ja9924187
-
[11]
Wang, N.; Wang, M.; Wang, Y.; Zheng, D.; Han, H.; Ahlquist, M. S. G.; Sun, L. Catalytic activation of H2 under mild conditions by an [FeFe]-hydrogenase model via an active μ-hydride species. J. Am. Chem. Soc. 2013, 135, 13688‒13691. doi: 10.1021/ja408376t
-
[12]
Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Coordination sphere flexibility of active-site models for Fe-only hydrogenase: studies in intra-and intermolecular diatomic ligand exchange. J. Am. Chem. Soc. 2001, 123, 3268‒3278. doi: 10.1021/ja003147z
-
[13]
Liu, X. F.; Yin, B. S. Synthesis and structural characterization of diiron propanedithiolate complex [(µ-PDT)Fe2(CO)5]2[(η5-Ph2PC5H4)2Fe] containing a bidentate phosphine ligand 1, 1΄-bis(diphenylphosphino)ferrocene. J. Coord. Chem. 2010, 63, 4061‒4067. doi: 10.1080/00958972.2010.531715
-
[14]
Gao, W.; Ekström, J.; Liu, J.; Chen, C.; Eriksson, L.; Weng, L.; Åkermark, B.; Sun, L. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction. Inorg. Chem. 2007, 46, 1981‒1991. doi: 10.1021/ic0610278
-
[15]
Ghosh, S.; Hogarth, G.; Hollingsworth, N.; Holt, K. B.; Richard, I.; Richmond, M. G.; Sanchez, B. E.; Unwin, D. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Dalton. Trans. 2013, 42, 6775‒6792. doi: 10.1039/c3dt50147g
-
[16]
Adam, F. I.; Hogarth, G.; Richards, I.; Sanchez, B. E. Models of the iron-only hydrogenase: structural studies of chelating diphosphine complexes [Fe2(CO)4(μ-pdt)(κ2P, P΄-diphosphine)]. Dalton Trans. 2007, 2495‒2498.
-
[17]
Zhao, P. H.; Ma, Z. Y.; Hu, M. Y.; He, J.; Wang, Y. Z.; Jing, X. B.; Chen, H. Y.; Wang, Z.; Li, Y. L. PNP-chelated and -bridged diiron dithiolate complexes Fe2(μ-pdt)(CO)4{(Ph2P)2NR} together with related monophosphine complexes for the [2Fe]H subsite of [FeFe]-hydrogenases: preparation, structure, and electrocatalysis. Organometallics 2018, 37, 1280‒1290. doi: 10.1021/acs.organomet.8b00030
-
[18]
Zhao, P. H.; Hu, M. Y.; Li, J. R.; Ma, Z. Y.; Wang, Y. Z.; He, J.; Li, Y. L.; Liu, X. F. Influence of dithiolate bridges on the structures and electrocatalytic performance of small bite-angle PNP-chelated diiron complexes Fe2(μ-xdt)(CO)4{κ2‑(Ph2P)2NR} related to [FeFe]-hydrogenases. Organometallics 2019, 38, 385‒394. doi: 10.1021/acs.organomet.8b00759
-
[19]
Winter, A.; Zsolnai, L.; Huttner, G. Dinuclear and trinuclear carbonyliron complexes containing 1, 2-and 1, 3-dithiolato bridging ligands. Z. Naturforsch. 1982, 37b, 1430‒1436.
-
[20]
APEX2, version 2009.7-0, Bruker AXS, Inc., Madison, WI 2007.
-
[21]
Sheldrick, G. M. SADABS: Program for Absorption Correction of Area Detector Frames. Bruker AXS Inc. : Madison, WI 2001.
-
[22]
Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339‒341. doi: 10.1107/S0021889808042726
-
[23]
Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112‒122.
-
[24]
Zhao, P. H.; Li, X. H.; Liu, Y. F.; Liu, Y. Q. Facile synthesis, X-ray analysis, and spectroscopic studies of di-iron propanedithiolate complexes with tris(aromatic) phosphine ligands. J. Coord. Chem. 2014, 67, 766‒778. doi: 10.1080/00958972.2014.903329
-
[25]
Lian, M.; He, J.; Yu, X. Y.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q. Diiron ethanedithiolate complexes with acetate ester: synthesis, characterization and electrochemical properties. J. Organomet. Chem. 2018, 870, 90‒96. doi: 10.1016/j.jorganchem.2018.06.023
-
[26]
Chen, F. Y.; He, J.; Yu, X. Y.; Wang, Z.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Electrocatalytic properties of diiron ethanedithiolate complexes containing benzoate ester. Appl. Organomet. Chem. 2018, 32, e4549. doi: 10.1002/aoc.4549
-
[27]
Chen, F. Y.; He, J.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Synthesis and characterization of five diiron ethanedithiolate complexes with acetate group and phosphine ligands. Polyhedron 2019, 160, 74‒82. doi: 10.1016/j.poly.2018.12.027
-
[28]
Ezzaher, S.; Capon, J. F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J. Evidence for the formation of terminal hydrides by protonation of an asymmetric iron hydrogenase active site mimic. Inorg. Chem. 2007, 46, 3426‒3428. doi: 10.1021/ic0703124
-
[29]
Ortega-Alfaro, M. C.; Hernández, N.; Cerna, I.; López-Cortés, J. G.; Gómez, E.; Toscano, R. A.; Alvarez-Toledano, C. Novel dinuclear iron(0) complexes from α, β-unsaturated ketones β-positioned with sulfide and sulfoxide groups. J. Organomet. Chem. 2004, 689, 885‒893. doi: 10.1016/j.jorganchem.2003.12.015
-
[30]
Liu, X. F. Synthesis, characterization and molecular structure of a diiron complex (μ-SCH2CH2CH2S-μ)Fe2(CO)5(Ph2PCH3). Chin. J. Struct. Chem. 2016, 35, 1563‒1567.
-
[31]
Song, L. C.; Ge, J. H.; Zhang, X. G.; Liu, Y.; Hu, Q. M. Methoxyphenyl-functionalized diiron azadithiolates as models for the active site of Fe-only hydrogenases: synthesis, structures, and biomimetic H2 evolution. Eur. J. Inorg. Chem. 2006, 2006, 3204‒3210. doi: 10.1002/ejic.200600242
-
[32]
Gloaguen, F.; Lawrence, J. D.; Rauchfuss, T. B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate. J. Am. Chem. Soc. 2001, 123, 9476‒9477. doi: 10.1021/ja016516f
-
[33]
Song, L. C.; Ge, J. H.; Liu, X. F.; Zhao, L. Q.; Hu, Q. M. Synthesis, structure and electrochemical properties of N-substituted diiron azadithiolates as active site models of Fe-only hydrogenases. J. Organomet. Chem. 2006, 691, 5701‒5709. doi: 10.1016/j.jorganchem.2006.06.044
-
[1]
-
-
[1]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[2]
Jingqi Ma , Huangjie Lu , Junpu Yang , Liangwei Yang , Jian-Qiang Wang , Xianlong Du , Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275
-
[3]
Xin Dong , Jing Liang , Zhijin Xu , Huajie Wu , Lei Wang , Shihai You , Junhua Luo , Lina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708
-
[4]
Xiuwen Xu , Quan Zhou , Yacong Wang , Yunjie He , Qiang Wang , Yuan Wang , Bing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272
-
[5]
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
-
[6]
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233
-
[7]
Xin Dong , Tianqi Chen , Jing Liang , Lei Wang , Huajie Wu , Zhijin Xu , Junhua Luo , Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256
-
[8]
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
-
[9]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[10]
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
-
[11]
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
-
[12]
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411
-
[13]
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
-
[14]
Tiantian Gong , Yanan Chen , Shuo Wang , Miao Wang , Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370
-
[15]
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
-
[16]
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
-
[17]
Keke Han , Wenjun Rao , Xiuli You , Haina Zhang , Xing Ye , Zhenhong Wei , Hu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4−, ReO4−). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809
-
[18]
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
-
[19]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[20]
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(211)
- HTML views(2)