Citation: Hui-Min LIN, Ao LI, Qi-Min XIAO, Xu-Feng LIU, Yu-Long LI, Xing-Hai LIU, Zhong-Qing JIANG. Synthesis, Characterization and Electrochemistry of 1, 2-Bis(diphenylphosphino)benzene-chelated Diiron Ethane-1, 2-dithiolate Tetracarbonyl Complex[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 927-932. doi: 10.14102/j.cnki.0254-5861.2011-2502 shu

Synthesis, Characterization and Electrochemistry of 1, 2-Bis(diphenylphosphino)benzene-chelated Diiron Ethane-1, 2-dithiolate Tetracarbonyl Complex

  • Corresponding author: Xing-Hai LIU, 
  • Received Date: 17 June 2019
    Accepted Date: 2 September 2019

    Fund Project: the Natural Science Foundation of Zhejiang Province LY19B020002National Natural Science Foundation of China 21501124Science & Technology Department of Sichuan Province 2018JY0235Education Department of Sichuan Province 18ZA0337Sichuan University of Science & Engineering S201910622022

Figures(2)

  • In this paper, a novel diiron ethane-1, 2-dithiolate complex [Fe2(CO)4{κ2-(Ph2P)2(1, 2-C6H4)}(μ-SCH2CH2S)] has been prepared and structurally characterized. Treatment of the parent complex [Fe2(CO)6(μ-SCH2CH2S)] with 1 equivalent of 1, 2-bis(diphenylphosphino)benzene and Me3NO∙2H2O as the oxidative agent gave the title complex in good yield. The title complex has been characterized by elemental analysis, IR, 1H NMR, 31P{1H} NMR, 13C{1H} NMR spectroscopy, and X-ray crystallography. X-ray crystal structure of the title complex contains a butterfly diiron cluster with a bridging ethane-1, 2-dithiolate, four terminal carbonyls, and a chelating 1, 2-bis(diphenylphosphino)benzene. In addition, electrochemical studies revealed that the title complex can catalyze the reduction of protons to H2 in the presence of acetic acid.
  • 加载中
    1. [1]

      Tard, C.; Pickett, C. J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 2009, 109, 2245‒2274.  doi: 10.1021/cr800542q

    2. [2]

      Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081‒4148.  doi: 10.1021/cr4005814

    3. [3]

      Rauchfuss, T. B. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc. Chem. Res. 2015, 48, 2107‒2116.  doi: 10.1021/acs.accounts.5b00177

    4. [4]

      Li, Y.; Rauchfuss, T. B. Synthesis of diiron(I) dithiolato carbonyl complexes. Chem. Rev. 2016, 116, 7043‒7077.  doi: 10.1021/acs.chemrev.5b00669

    5. [5]

      Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from clostridium pasteurianum to 1.8 angstrom resolution. Science 1998, 282, 1853‒1858.  doi: 10.1126/science.282.5395.1853

    6. [6]

      Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 1999, 7, 13‒23.  doi: 10.1016/S0969-2126(99)80005-7

    7. [7]

      Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Carbon monoxide and cyanide ligands in a classical organometallic complex model for Fe-only hydrogenase. Angew. Chem. Int. Ed. 1999, 38, 3178‒3180.  doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4

    8. [8]

      Lawrence, J. D.; Li, H.; Rauchfuss, T. B.; Bénard, M.; Rohmer, M. M. Diiron azadithiolates as models for the iron-only hydrogenase active site: synthesis, structure, and stereoelectronics. Angew. Chem. Int. Ed. 2001, 40, 1768‒1771.  doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E

    9. [9]

      Fan, H. J.; Hall, M. B. A capable bridging ligand for Fe-only hydrogenase: density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen. J. Am. Chem. Soc. 2001, 123, 3828‒3829.  doi: 10.1021/ja004120i

    10. [10]

      Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. First generation analogues of the binuclear site in the Fe-only hydrogenases: Fe2(μ-SR)2(CO)4(CN)22‒. J. Am. Chem. Soc. 1999, 121, 9736‒9737.  doi: 10.1021/ja9924187

    11. [11]

      Wang, N.; Wang, M.; Wang, Y.; Zheng, D.; Han, H.; Ahlquist, M. S. G.; Sun, L. Catalytic activation of H2 under mild conditions by an [FeFe]-hydrogenase model via an active μ-hydride species. J. Am. Chem. Soc. 2013, 135, 13688‒13691.  doi: 10.1021/ja408376t

    12. [12]

      Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Coordination sphere flexibility of active-site models for Fe-only hydrogenase: studies in intra-and intermolecular diatomic ligand exchange. J. Am. Chem. Soc. 2001, 123, 3268‒3278.  doi: 10.1021/ja003147z

    13. [13]

      Liu, X. F.; Yin, B. S. Synthesis and structural characterization of diiron propanedithiolate complex [(µ-PDT)Fe2(CO)5]2[(η5-Ph2PC5H4)2Fe] containing a bidentate phosphine ligand 1, 1΄-bis(diphenylphosphino)ferrocene. J. Coord. Chem. 2010, 63, 4061‒4067.  doi: 10.1080/00958972.2010.531715

    14. [14]

      Gao, W.; Ekström, J.; Liu, J.; Chen, C.; Eriksson, L.; Weng, L.; Åkermark, B.; Sun, L. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction. Inorg. Chem. 2007, 46, 1981‒1991.  doi: 10.1021/ic0610278

    15. [15]

      Ghosh, S.; Hogarth, G.; Hollingsworth, N.; Holt, K. B.; Richard, I.; Richmond, M. G.; Sanchez, B. E.; Unwin, D. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Dalton. Trans. 2013, 42, 6775‒6792.  doi: 10.1039/c3dt50147g

    16. [16]

      Adam, F. I.; Hogarth, G.; Richards, I.; Sanchez, B. E. Models of the iron-only hydrogenase: structural studies of chelating diphosphine complexes [Fe2(CO)4(μ-pdt)(κ2P, P΄-diphosphine)]. Dalton Trans. 2007, 2495‒2498.

    17. [17]

      Zhao, P. H.; Ma, Z. Y.; Hu, M. Y.; He, J.; Wang, Y. Z.; Jing, X. B.; Chen, H. Y.; Wang, Z.; Li, Y. L. PNP-chelated and -bridged diiron dithiolate complexes Fe2(μ-pdt)(CO)4{(Ph2P)2NR} together with related monophosphine complexes for the [2Fe]H subsite of [FeFe]-hydrogenases: preparation, structure, and electrocatalysis. Organometallics 2018, 37, 1280‒1290.  doi: 10.1021/acs.organomet.8b00030

    18. [18]

      Zhao, P. H.; Hu, M. Y.; Li, J. R.; Ma, Z. Y.; Wang, Y. Z.; He, J.; Li, Y. L.; Liu, X. F. Influence of dithiolate bridges on the structures and electrocatalytic performance of small bite-angle PNP-chelated diiron complexes Fe2(μ-xdt)(CO)4{κ2‑(Ph2P)2NR} related to [FeFe]-hydrogenases. Organometallics 2019, 38, 385‒394.  doi: 10.1021/acs.organomet.8b00759

    19. [19]

      Winter, A.; Zsolnai, L.; Huttner, G. Dinuclear and trinuclear carbonyliron complexes containing 1, 2-and 1, 3-dithiolato bridging ligands. Z. Naturforsch. 1982, 37b, 1430‒1436.

    20. [20]

      APEX2, version 2009.7-0, Bruker AXS, Inc., Madison, WI 2007.

    21. [21]

      Sheldrick, G. M. SADABS: Program for Absorption Correction of Area Detector Frames. Bruker AXS Inc. : Madison, WI 2001.

    22. [22]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339‒341.  doi: 10.1107/S0021889808042726

    23. [23]

      Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112‒122.

    24. [24]

      Zhao, P. H.; Li, X. H.; Liu, Y. F.; Liu, Y. Q. Facile synthesis, X-ray analysis, and spectroscopic studies of di-iron propanedithiolate complexes with tris(aromatic) phosphine ligands. J. Coord. Chem. 2014, 67, 766‒778.  doi: 10.1080/00958972.2014.903329

    25. [25]

      Lian, M.; He, J.; Yu, X. Y.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q. Diiron ethanedithiolate complexes with acetate ester: synthesis, characterization and electrochemical properties. J. Organomet. Chem. 2018, 870, 90‒96.  doi: 10.1016/j.jorganchem.2018.06.023

    26. [26]

      Chen, F. Y.; He, J.; Yu, X. Y.; Wang, Z.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Electrocatalytic properties of diiron ethanedithiolate complexes containing benzoate ester. Appl. Organomet. Chem. 2018, 32, e4549.  doi: 10.1002/aoc.4549

    27. [27]

      Chen, F. Y.; He, J.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Synthesis and characterization of five diiron ethanedithiolate complexes with acetate group and phosphine ligands. Polyhedron 2019, 160, 74‒82.  doi: 10.1016/j.poly.2018.12.027

    28. [28]

      Ezzaher, S.; Capon, J. F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J. Evidence for the formation of terminal hydrides by protonation of an asymmetric iron hydrogenase active site mimic. Inorg. Chem. 2007, 46, 3426‒3428.  doi: 10.1021/ic0703124

    29. [29]

      Ortega-Alfaro, M. C.; Hernández, N.; Cerna, I.; López-Cortés, J. G.; Gómez, E.; Toscano, R. A.; Alvarez-Toledano, C. Novel dinuclear iron(0) complexes from α, β-unsaturated ketones β-positioned with sulfide and sulfoxide groups. J. Organomet. Chem. 2004, 689, 885‒893.  doi: 10.1016/j.jorganchem.2003.12.015

    30. [30]

      Liu, X. F. Synthesis, characterization and molecular structure of a diiron complex (μ-SCH2CH2CH2S-μ)Fe2(CO)5(Ph2PCH3). Chin. J. Struct. Chem. 2016, 35, 1563‒1567.

    31. [31]

      Song, L. C.; Ge, J. H.; Zhang, X. G.; Liu, Y.; Hu, Q. M. Methoxyphenyl-functionalized diiron azadithiolates as models for the active site of Fe-only hydrogenases: synthesis, structures, and biomimetic H2 evolution. Eur. J. Inorg. Chem. 2006, 2006, 3204‒3210.  doi: 10.1002/ejic.200600242

    32. [32]

      Gloaguen, F.; Lawrence, J. D.; Rauchfuss, T. B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate. J. Am. Chem. Soc. 2001, 123, 9476‒9477.  doi: 10.1021/ja016516f

    33. [33]

      Song, L. C.; Ge, J. H.; Liu, X. F.; Zhao, L. Q.; Hu, Q. M. Synthesis, structure and electrochemical properties of N-substituted diiron azadithiolates as active site models of Fe-only hydrogenases. J. Organomet. Chem. 2006, 691, 5701‒5709.  doi: 10.1016/j.jorganchem.2006.06.044

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    3. [3]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    4. [4]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    5. [5]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    6. [6]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    7. [7]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    8. [8]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    11. [11]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    12. [12]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    13. [13]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    14. [14]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    15. [15]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    16. [16]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    17. [17]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    18. [18]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

Metrics
  • PDF Downloads(1)
  • Abstract views(211)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return