Citation: Bu-Tong LI, Lu-Lin LI, Chuan YANG. Theoretical Study on Nitroso-Substituted Derivatives of Azetidine as Potential High Energy Density Compounds[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 643-650. doi: 10.14102/j.cnki.0254-5861.2011-2501 shu

Theoretical Study on Nitroso-Substituted Derivatives of Azetidine as Potential High Energy Density Compounds

  • Corresponding author: Bu-Tong LI, libutong@hotmail.com
  • Received Date: 17 June 2019
    Accepted Date: 11 September 2019

    Fund Project: the Natural Science Foundation of Guizhou Province QKHPTRC[2018]5778-09the Natural Science Foundation of Guizhou Province QKHJC[2020]1Y038the Natural Science Foundation of Guizhou Education University 14BS017the Natural Science Foundation of Guizhou Education University 2019ZD001

Figures(1)

  • At the B3PW91/6-311+G(d,p)//MP2/6-311+G(d,p) level, molecular densities, detonation velocities, and detonation pressures of nitroso substituted derivatives of azetidine with their thermal stabilities were investigated to look for high energy density compounds (HEDCs). It was found that the azetidine derivatives had high heat of formation (HOF) and large bond dissociation energy (BDE). Intramolecular hydrogen bonds were located in three molecules (1, 4, and 5), and the molecular stability were improved markedly as well. For 5 and 6, the detonation performances (D= 9.36km/s and 10.80km/s, P= 44.42GPa and 60.70GPa, respectively) meet requirements as high energy density compounds. This work may provide basic information for further study of title compounds.
  • 加载中
    1. [1]

      Huynh M. H. V.; Hiskey M. A.; Chavez D. E.; Naud D. L.; Gilardi R. D. Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen C−N Compound. J. Am. Chem. Soc. 2005, 127, 12537−12543.  doi: 10.1021/ja0509735

    2. [2]

      Gutowski K. E.; Rogers R. D.; Dixon D. A. Accurate Thermochemical properties for energetic materials applications. Ⅱ. Heats of formation of imidazolium-, 1,2,4-Triazolium-, and tetrazolium-based energetic salts from isodesmic and lattice energy calculations. J. Phys. Chem. B 2007, 111, 4788−4800.  doi: 10.1021/jp066420d

    3. [3]

      Li B.; Zhou M.; Peng J.; Li L.; Guo Y. Theoretical calculations about nitro-substituted pyridine as high-energy-density compounds (HEDCs). J. Mol. Model. 2019, 25, 23−28.  doi: 10.1007/s00894-018-3904-4

    4. [4]

      Shu X.; Tian Y.; Song G.; Zhang H.; Kang B.; Zhang C.; Liu Y.; Liu X.; Sun J. Thermal expansion and theoretical density of 2, 2′, 4, 4′, 6, 6′-hexanitrostilbene. J. Mater. Sci. 2011, 46, 2536−2540.  doi: 10.1007/s10853-010-5105-0

    5. [5]

      Li Y.; Feng X.; Liu H.; Hao J.; Redfern S. A. T.; Lei W.; Liu D.; Ma Y. Route to high-energy density polymeric nitrogen t-N via He-N compounds. Nat. Commun. 2018, 9, 722−728.  doi: 10.1038/s41467-018-03200-4

    6. [6]

      Wu J.; Huang Y.; Yang L.; Geng D.; Wang F.; Wang H.; Chen L. Reactive molecular dynamics simulations of the thermal decomposition mechanism of 1,3,3-trinitroazetidine (TNAZ). ChemPhysChem 2018, 19, 2683−2695.  doi: 10.1002/cphc.201800550

    7. [7]

      Liu F. L.; Liu Y.; Zhang L.; Wu Y. M. A dodecahedrane-like molecule C12H12B8 with uncommon Th symmetry. Chinese J. Struct. Chem. 2012, 31, 677−682.

    8. [8]

      Mei Z.; Li X. H.; Cui H. L.; Wang H. X.; Zhang R. Z. Theoretical studies on the structure and detonation properties of a furazan- based energetic macrocycle compound. Chinese J. Struct. Chem. 2016, 35, 16−24.

    9. [9]

      Smith G. D.; Bharadwaj R. K. Quantum chemistry based force field for simulations of HMX. J. Phys. Chem. B 1999, 103, 3570−3575.  doi: 10.1021/jp984599p

    10. [10]

      Brill T. B.; Gongwer P. E.; Williams G. K. Thermal decomposition of energetic materials. 66. kinetic compensation effects in HMX, RDX, and NTO. J. Phys. Chem. 1994, 98, 12242−12247.  doi: 10.1021/j100098a020

    11. [11]

      Alavi G.; Chung M.; Lichwa J.; D'Alessio M.; Ray C. The fate and transport of RDX, HMX, TNT and DNT in the volcanic soils of Hawaii: A laboratory and modeling study. J. Hazard. Mater. 2011, 185, 1600−1604.  doi: 10.1016/j.jhazmat.2010.10.039

    12. [12]

      Ariyarathna T.; Ballentine M.; Vlahos P.; Smith R. W.; Cooper C.; Bohlke J. K.; Fallis S.; Groshens T. J.; Tobias C. Tracing the cycling and fate of the munition, Hexahydro-1,3,5-trinitro-1,3,5-triazine in a simulated sandy coastal marine habitat with a stable isotopic tracer, (15)N-[RDX]. Sci. Total. Environ. 2019, 647, 369−378.  doi: 10.1016/j.scitotenv.2018.07.404

    13. [13]

      Eberly J. O.; Mayo M. L.; Carr M. R.; Crocker F. H.; Indest K. J. Detection of hexahydro-1,3-5-trinitro-1,3,5-triazine (RDX) with a microbial sensor. J. Gen. Appl. Microbiol. 2019, 64, 139−144.

    14. [14]

      Archibald T. G.; Gilardi R.; Baum K.; George C. Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine. J. Org. Chem. 1990, 55, 2920−2924.  doi: 10.1021/jo00296a066

    15. [15]

      Thompson C. A.; Rice J. K.; Russell T. P.; Seminario J. M.; Politzer P. Vibrational analysis of 1,3,3-trinitroazetidine using matrix isolation infrared spectroscopy and quantum chemical calculations. J. Phys. Chem. A 1997, 101, 7742−7748.  doi: 10.1021/jp971173m

    16. [16]

      Sikder N.; Sikder A. K.; Bulakh N. R.; Gandhe B. R. 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive: synthesis, characterization and thermal behaviour. J. Hazard. Mater. 2004, 113, 35−43.  doi: 10.1016/j.jhazmat.2004.06.002

    17. [17]

      Hammerl A.; Klapötke T. M.; Nöth H.; Warchhold M.; Holl G.; Kaiser M.; Ticmanis U. [N2H5]+2[N4C−NN−CN4]2-:   A new high-nitrogen high-energetic material. Inorg. Chem. 2001, 40, 3570−3575.  doi: 10.1021/ic010063y

    18. [18]

      Chavez D. E.; Hiskey M. A. 1,2,4,5-tetrazine based energetic materials. J. Energetic Mater. 1999, 17, 357−377.  doi: 10.1080/07370659908201796

    19. [19]

      De Vries L.; Winstein S. Neighboring carbon and hydrogen. XXXIX. 1 Complex rearrangements of bridged ions. Rearrangement leading to the bird-cage hydrocarbon1. J. Am. Chem. Soc. 1960, 82, 5363−5376.  doi: 10.1021/ja01505a023

    20. [20]

      Liebman J. F.; Greenberg A. A survey of strained organic molecules. Chem. Rev. 1976, 76, 311−365.  doi: 10.1021/cr60301a002

    21. [21]

      Marchand A. P.; Wu A. Syntheses of new substituted pentacyclo[5.4. 0.02, 6.03, 10.05, 9]undecanes: a novel synthesis of hexacyclo[6.2. 1.13, 6.02, 7.04, 10.05, 9]dodecane (1,3-bishomopentaprismane). J. Org. Chem. 1986, 51, 1897−1900.  doi: 10.1021/jo00360a046

    22. [22]

      Nielsen A. T.; Nissan R. A.; Vanderah D. J.; Coon C. L.; Gilardi R. D.; George C. F.; Flippen-Anderson J. Polyazapolycyclics by condensation of aldehydes with amines. 2. Formation of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo [5.5. 0.05. 9.03, 11] dodecanes from glyoxal and benzylamines. J. Org. Chem. 1990, 55, 1459−1466.  doi: 10.1021/jo00292a015

    23. [23]

      Schulman J. M.; Disch R. L. Ab initio heats of formation of medium-sized hydrocarbons. The heat of formation of dodecahedrane. J. Am. Chem. Soc. 1984, 106, 1202−1204.  doi: 10.1021/ja00317a005

    24. [24]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA 2003, Gaussian 03, Revision B. 01.

    25. [25]

      Hehre W. J.; Ditchfield R.; Pople J. A. Self−Consistent molecular orbital methods. XII. Further extensions of Gaussian−Type basis sets for use in molecular orbital studies of organic olecules. J. Chem. Phys. 1972, 56, 2257−2261.  doi: 10.1063/1.1677527

    26. [26]

      Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785−789.  doi: 10.1103/PhysRevB.37.785

    27. [27]

      Schütz M.; Hetzer G.; Werner H.-J. Low-order scaling local electron correlation methods. I. Linear scaling local MP2. J. Chem. Phys. 1999, 111, 5691−5705.  doi: 10.1063/1.479957

    28. [28]

      Curtiss L. A.; Raghavachari K.; Redfern P. C.; Stefanov B. B. Assessment of complete basis set methods for calculation of enthalpies of formation. J. Chem. Phys. 1998, 108, 692−697.  doi: 10.1063/1.475442

    29. [29]

      Curtiss L. A.; Raghavachari K.; Redfern P. C.; Pople J. A. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys. 1997, 106, 1063−1079.  doi: 10.1063/1.473182

    30. [30]

      Shao J.; Cheng X.; Yang X. Density functional calculations of bond dissociation energies for removal of the nitrogen dioxide moiety in some nitroaromatic molecules. J. Mol. Struct. THEOCHEM 2005, 755, 127−130.  doi: 10.1016/j.theochem.2005.08.008

    31. [31]

      Politzer P.; Lane P. Comparison of density functional calculations of C–NO2, N–NO2 and C–NF2 dissociation energies. J. Mol. Struct. THEOCHEM 1996, 388, 51−55.

    32. [32]

      Harris N. J.; Lammertsma K. Ab initio density functional computations of conformations and bond dissociation energies for hexahydro-1,3,5-trinitro-1,3,5-triazine. J. Am. Chem. Soc. 1997, 119, 6583−6589.  doi: 10.1021/ja970392i

    33. [33]

      Kamlet M. J.; Jacobs S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys. 1968, 48, 23−35.  doi: 10.1063/1.1667908

    34. [34]

      Politzer P.; Ma Y.; Lane P.; Concha M. C. Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int. J. Quantum Chem. 2005, 105, 341−347.  doi: 10.1002/qua.20709

    35. [35]

      Owens F. J. Calculation of energy barriers for bond rupture in some energetic molecules. J. Mol. Struct. THEOCHEM 1996, 370, 11−16.  doi: 10.1016/S0166-1280(96)04673-8

    36. [36]

      Guo L. Density functional study of structural and electronic properties of GaPn (2 ≤ n ≤ 12) clusters. J. Mater. Sci. 2010, 45, 3381−3387.  doi: 10.1007/s10853-010-4361-3

    37. [37]

      Fan X.-W.; Ju X.-H. Theoretical studies on four-membered ring compounds with NF2, ONO2, N3, and NO2 groups. J. Comput. Chem. 2008, 29, 505−513.  doi: 10.1002/jcc.20809

    38. [38]

      Rice B. M.; Sahu S.; Owens F. J. Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules. J. Mol. Struct. THEOCHEM 2002, 583, 69−72.  doi: 10.1016/S0166-1280(01)00782-5

    39. [39]

      Zhang J.; Xiao H. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. J. Chem. Phys. 2002, 116, 10674−10683.  doi: 10.1063/1.1479136

    40. [40]

      Mulliken R. S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 1955, 23, 1833−1840.  doi: 10.1063/1.1740588

    41. [41]

      Keshavarz M. H.; Pouretedal H. R. Simple empirical method for prediction of impact sensitivity of selected class of explosives. J. Hazard. Mater. 2005, 124, 27−33.  doi: 10.1016/j.jhazmat.2005.05.009

    42. [42]

      Bulat F.; Toro-Labbé A.; Brinck T.; Murray J.; Politzer P. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 2010, 16, 1679−1691.  doi: 10.1007/s00894-010-0692-x

    43. [43]

      Gálvez-Ruiz J. C.; Holl G.; Karaghiosoff K.; Klapötke T. M.; Löhnwitz K.; Mayer P.; Nöth H.; Polborn K.; Rohbogner C. J.; Suter M.; Weigand J. J. Derivatives of 1,5-Diamino-1H-tetrazole: A new family of energetic heterocyclic-based salts. Inorg. Chem. 2005, 44, 4237−4253.  doi: 10.1021/ic050104g

    44. [44]

      Axenrod T.; Watnick C.; Yazdekhasti H.; Dave P. R. Synthesis of 1,3,3-trinitroazetidine. Tetrahedron Lett. 1993, 34, 677−6680.  doi: 10.1016/S0040-4039(00)61650-7

  • 加载中
    1. [1]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    2. [2]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    3. [3]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    4. [4]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    5. [5]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    6. [6]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    7. [7]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    8. [8]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    9. [9]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    10. [10]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    11. [11]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    12. [12]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    13. [13]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    14. [14]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    15. [15]

      Fei-Yan GaoYan WuLing YangZhong-Yi MaYi ChenXiao-Man MaoXu-Fei BianPei TangChong Li . Orally delivered berberine derivatives for dual therapy in diabetic complications with MRSA infections. Chinese Chemical Letters, 2025, 36(4): 109917-. doi: 10.1016/j.cclet.2024.109917

    16. [16]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    17. [17]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    18. [18]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    19. [19]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    20. [20]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

Metrics
  • PDF Downloads(1)
  • Abstract views(304)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return