Theoretical Study on Nitroso-Substituted Derivatives of Azetidine as Potential High Energy Density Compounds
- Corresponding author: Bu-Tong LI, libutong@hotmail.com
Citation:
Bu-Tong LI, Lu-Lin LI, Chuan YANG. Theoretical Study on Nitroso-Substituted Derivatives of Azetidine as Potential High Energy Density Compounds[J]. Chinese Journal of Structural Chemistry,
;2020, 39(4): 643-650.
doi:
10.14102/j.cnki.0254-5861.2011-2501
Huynh M. H. V.; Hiskey M. A.; Chavez D. E.; Naud D. L.; Gilardi R. D. Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen C−N Compound. J. Am. Chem. Soc. 2005, 127, 12537−12543.
doi: 10.1021/ja0509735
Gutowski K. E.; Rogers R. D.; Dixon D. A. Accurate Thermochemical properties for energetic materials applications. Ⅱ. Heats of formation of imidazolium-, 1,2,4-Triazolium-, and tetrazolium-based energetic salts from isodesmic and lattice energy calculations. J. Phys. Chem. B 2007, 111, 4788−4800.
doi: 10.1021/jp066420d
Li B.; Zhou M.; Peng J.; Li L.; Guo Y. Theoretical calculations about nitro-substituted pyridine as high-energy-density compounds (HEDCs). J. Mol. Model. 2019, 25, 23−28.
doi: 10.1007/s00894-018-3904-4
Shu X.; Tian Y.; Song G.; Zhang H.; Kang B.; Zhang C.; Liu Y.; Liu X.; Sun J. Thermal expansion and theoretical density of 2, 2′, 4, 4′, 6, 6′-hexanitrostilbene. J. Mater. Sci. 2011, 46, 2536−2540.
doi: 10.1007/s10853-010-5105-0
Li Y.; Feng X.; Liu H.; Hao J.; Redfern S. A. T.; Lei W.; Liu D.; Ma Y. Route to high-energy density polymeric nitrogen t-N via He-N compounds. Nat. Commun. 2018, 9, 722−728.
doi: 10.1038/s41467-018-03200-4
Wu J.; Huang Y.; Yang L.; Geng D.; Wang F.; Wang H.; Chen L. Reactive molecular dynamics simulations of the thermal decomposition mechanism of 1,3,3-trinitroazetidine (TNAZ). ChemPhysChem 2018, 19, 2683−2695.
doi: 10.1002/cphc.201800550
Liu F. L.; Liu Y.; Zhang L.; Wu Y. M. A dodecahedrane-like molecule C12H12B8 with uncommon Th symmetry. Chinese J. Struct. Chem. 2012, 31, 677−682.
Mei Z.; Li X. H.; Cui H. L.; Wang H. X.; Zhang R. Z. Theoretical studies on the structure and detonation properties of a furazan- based energetic macrocycle compound. Chinese J. Struct. Chem. 2016, 35, 16−24.
Smith G. D.; Bharadwaj R. K. Quantum chemistry based force field for simulations of HMX. J. Phys. Chem. B 1999, 103, 3570−3575.
doi: 10.1021/jp984599p
Brill T. B.; Gongwer P. E.; Williams G. K. Thermal decomposition of energetic materials. 66. kinetic compensation effects in HMX, RDX, and NTO. J. Phys. Chem. 1994, 98, 12242−12247.
doi: 10.1021/j100098a020
Alavi G.; Chung M.; Lichwa J.; D'Alessio M.; Ray C. The fate and transport of RDX, HMX, TNT and DNT in the volcanic soils of Hawaii: A laboratory and modeling study. J. Hazard. Mater. 2011, 185, 1600−1604.
doi: 10.1016/j.jhazmat.2010.10.039
Ariyarathna T.; Ballentine M.; Vlahos P.; Smith R. W.; Cooper C.; Bohlke J. K.; Fallis S.; Groshens T. J.; Tobias C. Tracing the cycling and fate of the munition, Hexahydro-1,3,5-trinitro-1,3,5-triazine in a simulated sandy coastal marine habitat with a stable isotopic tracer, (15)N-[RDX]. Sci. Total. Environ. 2019, 647, 369−378.
doi: 10.1016/j.scitotenv.2018.07.404
Eberly J. O.; Mayo M. L.; Carr M. R.; Crocker F. H.; Indest K. J. Detection of hexahydro-1,3-5-trinitro-1,3,5-triazine (RDX) with a microbial sensor. J. Gen. Appl. Microbiol. 2019, 64, 139−144.
Archibald T. G.; Gilardi R.; Baum K.; George C. Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine. J. Org. Chem. 1990, 55, 2920−2924.
doi: 10.1021/jo00296a066
Thompson C. A.; Rice J. K.; Russell T. P.; Seminario J. M.; Politzer P. Vibrational analysis of 1,3,3-trinitroazetidine using matrix isolation infrared spectroscopy and quantum chemical calculations. J. Phys. Chem. A 1997, 101, 7742−7748.
doi: 10.1021/jp971173m
Sikder N.; Sikder A. K.; Bulakh N. R.; Gandhe B. R. 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive: synthesis, characterization and thermal behaviour. J. Hazard. Mater. 2004, 113, 35−43.
doi: 10.1016/j.jhazmat.2004.06.002
Hammerl A.; Klapötke T. M.; Nöth H.; Warchhold M.; Holl G.; Kaiser M.; Ticmanis U. [N2H5]+2[N4C−NN−CN4]2-: A new high-nitrogen high-energetic material. Inorg. Chem. 2001, 40, 3570−3575.
doi: 10.1021/ic010063y
Chavez D. E.; Hiskey M. A. 1,2,4,5-tetrazine based energetic materials. J. Energetic Mater. 1999, 17, 357−377.
doi: 10.1080/07370659908201796
De Vries L.; Winstein S. Neighboring carbon and hydrogen. XXXIX. 1 Complex rearrangements of bridged ions. Rearrangement leading to the bird-cage hydrocarbon1. J. Am. Chem. Soc. 1960, 82, 5363−5376.
doi: 10.1021/ja01505a023
Liebman J. F.; Greenberg A. A survey of strained organic molecules. Chem. Rev. 1976, 76, 311−365.
doi: 10.1021/cr60301a002
Marchand A. P.; Wu A. Syntheses of new substituted pentacyclo[5.4. 0.02, 6.03, 10.05, 9]undecanes: a novel synthesis of hexacyclo[6.2. 1.13, 6.02, 7.04, 10.05, 9]dodecane (1,3-bishomopentaprismane). J. Org. Chem. 1986, 51, 1897−1900.
doi: 10.1021/jo00360a046
Nielsen A. T.; Nissan R. A.; Vanderah D. J.; Coon C. L.; Gilardi R. D.; George C. F.; Flippen-Anderson J. Polyazapolycyclics by condensation of aldehydes with amines. 2. Formation of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo [5.5. 0.05. 9.03, 11] dodecanes from glyoxal and benzylamines. J. Org. Chem. 1990, 55, 1459−1466.
doi: 10.1021/jo00292a015
Schulman J. M.; Disch R. L. Ab initio heats of formation of medium-sized hydrocarbons. The heat of formation of dodecahedrane. J. Am. Chem. Soc. 1984, 106, 1202−1204.
doi: 10.1021/ja00317a005
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA 2003, Gaussian 03, Revision B. 01.
Hehre W. J.; Ditchfield R.; Pople J. A. Self−Consistent molecular orbital methods. XII. Further extensions of Gaussian−Type basis sets for use in molecular orbital studies of organic olecules. J. Chem. Phys. 1972, 56, 2257−2261.
doi: 10.1063/1.1677527
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785−789.
doi: 10.1103/PhysRevB.37.785
Schütz M.; Hetzer G.; Werner H.-J. Low-order scaling local electron correlation methods. I. Linear scaling local MP2. J. Chem. Phys. 1999, 111, 5691−5705.
doi: 10.1063/1.479957
Curtiss L. A.; Raghavachari K.; Redfern P. C.; Stefanov B. B. Assessment of complete basis set methods for calculation of enthalpies of formation. J. Chem. Phys. 1998, 108, 692−697.
doi: 10.1063/1.475442
Curtiss L. A.; Raghavachari K.; Redfern P. C.; Pople J. A. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys. 1997, 106, 1063−1079.
doi: 10.1063/1.473182
Shao J.; Cheng X.; Yang X. Density functional calculations of bond dissociation energies for removal of the nitrogen dioxide moiety in some nitroaromatic molecules. J. Mol. Struct. THEOCHEM 2005, 755, 127−130.
doi: 10.1016/j.theochem.2005.08.008
Politzer P.; Lane P. Comparison of density functional calculations of C–NO2, N–NO2 and C–NF2 dissociation energies. J. Mol. Struct. THEOCHEM 1996, 388, 51−55.
Harris N. J.; Lammertsma K. Ab initio density functional computations of conformations and bond dissociation energies for hexahydro-1,3,5-trinitro-1,3,5-triazine. J. Am. Chem. Soc. 1997, 119, 6583−6589.
doi: 10.1021/ja970392i
Kamlet M. J.; Jacobs S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys. 1968, 48, 23−35.
doi: 10.1063/1.1667908
Politzer P.; Ma Y.; Lane P.; Concha M. C. Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int. J. Quantum Chem. 2005, 105, 341−347.
doi: 10.1002/qua.20709
Owens F. J. Calculation of energy barriers for bond rupture in some energetic molecules. J. Mol. Struct. THEOCHEM 1996, 370, 11−16.
doi: 10.1016/S0166-1280(96)04673-8
Guo L. Density functional study of structural and electronic properties of GaPn (2 ≤ n ≤ 12) clusters. J. Mater. Sci. 2010, 45, 3381−3387.
doi: 10.1007/s10853-010-4361-3
Fan X.-W.; Ju X.-H. Theoretical studies on four-membered ring compounds with NF2, ONO2, N3, and NO2 groups. J. Comput. Chem. 2008, 29, 505−513.
doi: 10.1002/jcc.20809
Rice B. M.; Sahu S.; Owens F. J. Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules. J. Mol. Struct. THEOCHEM 2002, 583, 69−72.
doi: 10.1016/S0166-1280(01)00782-5
Zhang J.; Xiao H. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. J. Chem. Phys. 2002, 116, 10674−10683.
doi: 10.1063/1.1479136
Mulliken R. S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 1955, 23, 1833−1840.
doi: 10.1063/1.1740588
Keshavarz M. H.; Pouretedal H. R. Simple empirical method for prediction of impact sensitivity of selected class of explosives. J. Hazard. Mater. 2005, 124, 27−33.
doi: 10.1016/j.jhazmat.2005.05.009
Bulat F.; Toro-Labbé A.; Brinck T.; Murray J.; Politzer P. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 2010, 16, 1679−1691.
doi: 10.1007/s00894-010-0692-x
Gálvez-Ruiz J. C.; Holl G.; Karaghiosoff K.; Klapötke T. M.; Löhnwitz K.; Mayer P.; Nöth H.; Polborn K.; Rohbogner C. J.; Suter M.; Weigand J. J. Derivatives of 1,5-Diamino-1H-tetrazole: A new family of energetic heterocyclic-based salts. Inorg. Chem. 2005, 44, 4237−4253.
doi: 10.1021/ic050104g
Axenrod T.; Watnick C.; Yazdekhasti H.; Dave P. R. Synthesis of 1,3,3-trinitroazetidine. Tetrahedron Lett. 1993, 34, 677−6680.
doi: 10.1016/S0040-4039(00)61650-7
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Ping Sun , Yuanqin Huang , Shunhong Chen , Xining Ma , Zhaokai Yang , Jian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
Xinghong Cai , Qiang Yang , Yao Tong , Lanyin Liu , Wutang Zhang , Sam Zhang , Min Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
Yadan SUN , Xinfeng LI , Qiang LIU , Oshio Hiroki , Yinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
Fei-Yan Gao , Yan Wu , Ling Yang , Zhong-Yi Ma , Yi Chen , Xiao-Man Mao , Xu-Fei Bian , Pei Tang , Chong Li . Orally delivered berberine derivatives for dual therapy in diabetic complications with MRSA infections. Chinese Chemical Letters, 2025, 36(4): 109917-. doi: 10.1016/j.cclet.2024.109917
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Shuying Li , Weiwei ZhuGe , Xuan Sun , Chongzhen Sun , Zhaojun Liu , Chenghe Xiong , Min Xiao , Guofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256