Citation: Yu-Xuan REN, Shuai-Tao WANG, Chen-Xu ZHANG, Huan-Ming WANG, Gui-Hui LI. Synthesis, Crystal Structure of Protic Pyrazolium Ionic Liquid and Its Catalytic Properties for CO2 Cycloaddition[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 801-808. doi: 10.14102/j.cnki.0254-5861.2011-2500 shu

Synthesis, Crystal Structure of Protic Pyrazolium Ionic Liquid and Its Catalytic Properties for CO2 Cycloaddition

  • Corresponding author: Gui-Hui LI, tzgncl@henu.edu.cn
  • Received Date: 17 June 2019
    Accepted Date: 11 October 2019

    Fund Project: the Key Scientific Research Plan Projects of Henan Province 18A150024Innovation and entrepreneurship support program for college students of Minsheng College, Henan University MSCXCY2018006

Figures(4)

  • Two protic pyrazolium ionic liquids (ILs) are synthesized and characterized by mass spectra (MS), 1H NMR, 13C NMR, and single-crystal X-ray diffraction. Then, their catalytic activity for the cycloaddition of PO and CO2 is investigated. Two protic pyrazolium ILs are the orthorhombic and triclinic systems of space groups Cmca and C2/c for HTMPzBr and HDMPzBr, respectively. They could catalyze the cycloaddition reaction of carbon dioxide (CO2) with epoxides (PO) to produce cyclic carbonate (PC) without any solvent and co-catalyst and show strong catalytic activity when the reaction temperature is over 110 ℃.
  • 加载中
    1. [1]

      Barker, R.; Hua, Y.; Neville, A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)–a review. Int. Mater. Rev. 2017, 62, 1–31.  doi: 10.1080/09506608.2016.1176306

    2. [2]

      Olah, G. A.; Prakash, G. K. S.; Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 2011, 133, 12881–12898.  doi: 10.1021/ja202642y

    3. [3]

      Sakakura, T.; Choi, J. C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 2007, 107, 2365–2387.  doi: 10.1021/cr068357u

    4. [4]

      Yang, X. F.; Kattel, S.; Senanayake, S. D.; Boscoboinik, J. A.; Nie, X. W.; Graciani, J.; Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Chen, J. G. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface. J. Am. Chem. Soc. 2015, 137, 10104–10107.  doi: 10.1021/jacs.5b06150

    5. [5]

      Darensbourg, D. J.; Kyran, S. J. Carbon dioxide copolymerization study with a sterically encumbering naphthalene-derived oxide. ACS Catal. 2015, 5, 5421–5430.  doi: 10.1021/acscatal.5b01375

    6. [6]

      Xie, J. N.; Yu, B.; Guo, C. X.; He, L. N. Copper(Ⅰ)/phosphine-catalyzed tandem carboxylation/annulation of terminal alkynes under ambient pressure of CO2: one-pot access to 3a-hydroxyisoxazolo [3, 2-a] isoindol-8 (3aH)-ones. Green Chem. 2015, 17, 4061–4067.  doi: 10.1039/C5GC00926J

    7. [7]

      Jiang, X.; Gou, F. L.; Fu, X. Y.; Jing, H. W. Ionic liquids-functionalized porphyrins as bifunctional catalysts for cycloaddition of carbon dioxide to epoxides. J. CO2 Util. 2016, 16, 264–271.  doi: 10.1016/j.jcou.2016.08.003

    8. [8]

      Doskocil, E. J. Effect of water and alkali modifications on ETS-10 for the cycloaddition of CO2 to propylene oxide. J. Phys. Chem. B 2005, 109, 2315–2320.  doi: 10.1021/jp048870g

    9. [9]

      Kihara, N.; Hara, N.; Endo, T. Catalytic activity of various salts in the reaction of 2, 3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J. Org. Chem. 1993, 58, 6198–6202.  doi: 10.1021/jo00075a011

    10. [10]

      Huang, J. W.; Shi, M. Chemical fixation of carbon dioxide by NaI/PPh3/PhOH. J. Org. Chem. 2003, 68, 6705–6709.  doi: 10.1021/jo0348221

    11. [11]

      Liang, S. G.; Liu, H. Z.; Jiang, T.; Song, J. L.; Yang, G. Y.; Han, B. X. Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI. Chem. Comm. 2011, 47, 2131–2133.  doi: 10.1039/C0CC04829A

    12. [12]

      Wang, B. S.; Feng, X.; Zhang, L. F.; Yang, S. J.; Jiang, X. Z.; Zhou, J.; Gao, G. H. One-pot reaction of CO2, epichlorohydrin and amine to synthesize 4-(phenylamino) methyl-ethylene carbonate catalyzed by ionic liquids. J. CO2 Util. 2013, 1, 88–91.  doi: 10.1016/j.jcou.2013.02.001

    13. [13]

      Chen, F. F.; Huang, K.; Zhou, Y.; Tian, Z. Q.; Zhu, X.; Tao, D. J.; Jiang, D.; Dai, S. Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids. Angew. Chem. Int. Ed. 2016, 55, 7166–7170.  doi: 10.1002/anie.201602919

    14. [14]

      Wang, L.; Jin, X. F.; Li, P.; Zhang, J. L.; He, H. Y.; Zhang, S. J. Hydroxyl-functionalized ionic liquid promoted CO2 fixation according to electrostatic attraction and hydrogen bonding interaction. Ind. Eng. Chem. Res. 2014, 53, 8426–8435.  doi: 10.1021/ie501063f

    15. [15]

      Zheng, D. N.; Zhang, J. S.; Zhu, X. R.; Ren, T. G.; Wang, L.; Zhang, J. L. Solvent effects on the coupling reaction of CO2 with PO catalyzed by hydroxyl imidazolium ionic liquid: comparison of different models. J. CO2 Util. 2018, 27, 99–106.  doi: 10.1016/j.jcou.2018.07.005

    16. [16]

      Sun, J. M.; Fujita, S. I.; Zhao, F. Y.; Arai, M. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions. Green Chem. 2004, 6, 613–616.  doi: 10.1039/b413229g

    17. [17]

      Angell, C. A.; Ansari, Y.; Zhao, Z. Ionic liquids past, present and future. Faraday Discuss. 2012, 154, 9–27.  doi: 10.1039/C1FD00112D

    18. [18]

      Aoyagi, N.; Furusho, Y.; Endo, T. Convenient synthesis of cyclic carbonates from CO2 and epoxides by simple secondary and primary ammonium iodides as metal-free catalysts under mild conditions and its application to synthesis of polymer bearing cyclic carbonate moiety. J. Polym. Sci. A Pol. Chem. 2013, 51, 1230–1242.  doi: 10.1002/pola.26492

    19. [19]

      Xiao, L. F.; Su, D.; Yue, C. T.; Wu, W. Protic ionic liquids: a highly efficient catalyst for synthesis of cyclic carbonate from carbon dioxide and epoxides. J. CO2 Util. 2014, 6, 1–6.  doi: 10.1016/j.jcou.2014.01.004

    20. [20]

      Earle, M. J.; Seddon, K. R. Ionic liquids. Green solvents for the future. Pure Appl. Chem. 2000, 72, 1391–1398.  doi: 10.1351/pac200072071391

    21. [21]

      Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R.; Seddon, K. R. Ionic liquid crystals: hexafluorophosphate salts. J. Mater Chem. 1998, 8, 2627–2636.  doi: 10.1039/a806169f

    22. [22]

      Roche, D. J.; Gordon, C. M.; Imrie, C. T.; Ingram, M. D.; Kennedy, A. R.; Celso, L. F.; Triolo, A. Application of complementary experimental techniques to characterization of the phase behavior of [C16mim][PF6] and [C14mim][PF6]. Chem. Mater. 2003, 15, 3089–3097.  doi: 10.1021/cm021378u

    23. [23]

      Abdallah, D. J.; Robertson, A.; Hsu, H. F.; Weiss, R. G. Smectic liquid-crystalline phases of quaternary group VA (especially phosphonium) salts with three equivalent long n-alkyl chains. How do layered assemblies form in liquid-crystalline and crystalline phases. J. Am. Chem. Soc. 2000, 122, 3053–3062.  doi: 10.1021/ja994055g

    24. [24]

      Downard, A.; Earle, M. J.; Hardacre, C.; McMath, S. E. J.; Nieuwenhuyzen, M.; Teat, S. J. Structural studies of crystalline 1-alkyl-3-methylimidazolium chloride salts. Chem. Mater. 2004, 16, 43–48.  doi: 10.1021/cm034344a

    25. [25]

      Wang, A. J.; Zhao, Y.; Liu, X. M.; Chang, L. L.; Xuan, X. P. 1,3-Bis(carboxymethyl)imidazolium bis(trifluoromethylsulfonyl)imide organic salt: synthesis, single crystal structure, vibrational spectra, DFT calculations and physical-chemical properties. J. Fluorine Chem. 2016, 186, 7–11.  doi: 10.1016/j.jfluchem.2016.04.003

    26. [26]

      Wang, T. F.; Zheng, D. N.; Zhang, J. S.; Fan, B. W.; Ma, Y.; Ren, T. G.; Wang, L.; Zhang, J. L. Protic pyrazolium ionic liquids: an efficient catalyst for conversion of CO2 in the absence of metal and solvent. ACS Sustain. Chem. Eng. 2018, 6, 2574–2582.  doi: 10.1021/acssuschemeng.7b04051

    27. [27]

      Ma, Y.; Zhang, Y.; Chen, C.; Zhang, J. S.; Fan, B. W.; Wang, T. F.; Ren, T. G.; Wang, L.; Zhang, J. L. Insight on asym-pyrazolium ionic liquids for chemical fixation of CO2 and propylene epoxide into propylene arbonate without organic solvent and metal. Ind. Eng. Chem. Res. 2018, 57, 13342−13352.  doi: 10.1021/acs.iecr.8b02318

    28. [28]

      Ma, Y.; Chen, C.; Wang, T. F.; Zhang, J. S.; Wu, J. J.; Liu, X. D.; Ren, T. G.; Wang, L.; Zhang, J. L. Dialkylpyrazolium ionic liquids as novel catalyst for efficient fixation of CO2 with metal- and solvent-free. Appl. Catal. A Gen. 2017, 547, 265–273.  doi: 10.1016/j.apcata.2017.09.009

    29. [29]

      Wang, T. F.; Zheng, D. N.; Ma, Y.; Guo, J. Y.; He, Z. P.; Ma, B.; Liu, L. H.; Ren, T. G.; Wang, L.; Zhang, J. L. Benzyl substituted imidazolium ionic liquids as efficient solvent-free catalysts for the cycloaddition of CO2 with epoxides: experimental and theoretic study. J. CO2 Util. 2017, 22, 44–52.  doi: 10.1016/j.jcou.2017.09.009

    30. [30]

      Sheldrick, G. M. A short history of SHELX. Acta Cryst A. 2008, 64, 112–122.  doi: 10.1107/S0108767307043930

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    18. [18]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

Metrics
  • PDF Downloads(2)
  • Abstract views(398)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return