Citation: Meng YU, Jian-Mei HU, Yong WANG. Synthesis and Characterization of a Terpyridine Ligand and Its Interactions with Selected Metal Ions[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 783-792. doi: 10.14102/j.cnki.0254-5861.2011-2498 shu

Synthesis and Characterization of a Terpyridine Ligand and Its Interactions with Selected Metal Ions

  • Corresponding author: Yong WANG, wangyong198711@yahoo.com
  • Received Date: 25 December 2018
    Accepted Date: 9 April 2019

    Fund Project: the Science and Technology Research Project of Hubei Provincial Department of Education Q20194301the Cultivating Scientific Research Project of Jingchu University of Technology PY201901

Figures(12)

  • In this work, a terpyridine ligand L, (4΄-phenyl-2,2΄:6΄,2΄΄-terpyridine), was synthesized and fully characterized. Interactions of the ligand with selected metal ions like Cu(Ⅱ), Fe(Ⅲ), Pb(Ⅱ), Fe(Ⅱ), Cr(Ⅲ), Cd(Ⅱ), Co(Ⅱ), Zn(Ⅱ), Ni(Ⅱ) and Mn(Ⅱ) were investigated. Compared to ligand L, only Fe(Ⅱ) and Pb(Ⅱ) ions show new band in electronic absorption spectroscopy. Fluorescent spectroscopy indicates that Zn(Ⅱ) and Cd(Ⅱ) ions enhance the emission intensity of ligand L, and other selected ions quench emission intensity. To explore how Fe(Ⅱ) ion interacts with ligand L, Fe(L)-based complex 1 was synthesized, spectroscopic studies and single-crystal X-ray diffraction analysis. This implies ligand L has an excellent selectivity for Zn(Ⅱ) and Cd(Ⅱ) ions.
  • 加载中
    1. [1]

      Sauvage, J. P.; Collin, J. P.; Chambron, J. C.; Guillerez, S.; Coudret, C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Ruthenium(Ⅱ) and osmium(Ⅱ) bis(terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties. Chem. Rev. 1994, 94, 993–1019.  doi: 10.1021/cr00028a006

    2. [2]

      Hofmeier, H.; Schubert, U. S. Recent developments in the supramolecular chemistry of terpyridine-metal complexes. Chem. Soc. Rev. 2004, 33, 373–399.  doi: 10.1039/B400653B

    3. [3]

      Pal, P.; Mukherjee, S.; Maity, D.; Baitalik, S. Synthesis, photophysics, and switchable luminescence properties of a new class of ruthenium(Ⅱ)-terpyridine complexes containing photoisomerizable styrylbenzene units. ACS Omega 2018, 3, 14526–14537.  doi: 10.1021/acsomega.8b01927

    4. [4]

      Iranmanesh, H.; Arachchige, K. S. A.; Bhadbhade, M.; Donald, W. A.; Liew, J. Y.; Liu, K. T. C.; Luis, E. T.; Moore, E. G.; Price, J. R.; Yan, H.; Yang, J.; Beves, J. E. Chiral ruthenium(Ⅱ) complexes as supramolecular building blocks for heterometallic self-assembly. Inorg. Chem. 2016, 55, 12737–12751.  doi: 10.1021/acs.inorgchem.6b02007

    5. [5]

      Mondal, D.; Biswas, S.; Paul, A.; Baitalik, S. Luminescent dinuclear ruthenium terpyridine complexes with a bis-phenylbenzimidazole spacer. Inorg. Chem. 2017, 56, 7624–7641.  doi: 10.1021/acs.inorgchem.6b02937

    6. [6]

      Herrmann, J. F.; Popp, P. S.; Winter, A.; Schubert, U. S.; Höppener, C. Antenna-enhanced triplet-state emission of individual mononuclear ruthenium(Ⅱ)-bis-terpyridine complexes reveals their heterogeneous photophysical properties in the solid state. ACS Photonics 2016, 3, 1897–1906.  doi: 10.1021/acsphotonics.6b00419

    7. [7]

      Andres, P. R.; Schubert, U. S. New functional polymers and materials based on 2,2΄: 6΄, 2΄΄-terpyridine metal complexes. Adv. Mater. 2004, 16, 1043–1068.  doi: 10.1002/adma.200306518

    8. [8]

      Cerfontaine, S.; Marcélis, L.; Laramee-Milette, B.; Hanan, G. S.; Loiseau, F.; De Winter, J.; Gerbaux, P.; Elias, B. Converging energy transfer in polynuclear Ru(Ⅱ) multiterpyridine complexes: significant enhancement of luminescent properties. Inorg. Chem. 2018, 57, 2639–2653.  doi: 10.1021/acs.inorgchem.7b03040

    9. [9]

      Pal, P.; Mukherjee, S.; Maity, D.; Baitalik, S. Synthesis, structural characterization, and luminescence switching of diarylethene-conjugated Ru(Ⅱ)-terpyridine complexes by trans-cis photoisomerization: experimental and DFT/TD-DFT investigation. Inorg. Chem. 2018, 57, 5743–5753.  doi: 10.1021/acs.inorgchem.7b03096

    10. [10]

      Shi, H.; Du, L.; Lo, K. C.; Xiong, W.; Chan, W. K.; Phillips, D. L. Photoinduced triplet state electron transfer processes from ruthenium containing triblock copolymers to carbon nanotubes. J. Phys. Chem. C 2017, 121, 8145–8152.  doi: 10.1021/acs.jpcc.6b12812

    11. [11]

      Jiang, T.; Polizzi, N. F.; Rawson, J.; Therien, M. J. Engineering high-potential photo-oxidants with panchromatic absorption. J. Am. Chem. Soc. 2017, 139, 8412–8415.  doi: 10.1021/jacs.7b04400

    12. [12]

      Wu, K. Q.; Guo, J.; Yan, J. F.; Xie, L. L.; Xu, F. B.; Bai, S.; Nockemann, P.; Yuan, Y. F. Alkynyl-bridged ruthenium(Ⅱ) 4΄-diferrocenyl-2,2΄: 6΄, 2΄΄-terpyridine electron transfer complexes: synthesis, structures, and electrochemical and spectroscopic studies. Organometallics 2011, 30, 3504–3511.  doi: 10.1021/om200113d

    13. [13]

      Sheldrick, G. M. Program for X-ray Crystal Structure Refinement. University of Göttingen: Germany 2016.

    14. [14]

      KrÖHnke, F. The specific synthesis of pyridines and oligopyridines. Synthesis 1976, 1976, 1–24.  doi: 10.1055/s-1976-23941

    15. [15]

      Constable, E. C.; Lewis, J.; Liptrot, M. C.; Raithby, P. R. The coordination chemistry of 4΄-phenyl-2,2΄: 6΄, 2΄΄-terpyridine; the synthesis, crystal and molecular structures of 4΄-phenyl-2,2΄: 6΄, 2΄΄-terpyridine and bis(4΄-phenyl-2,2΄: 6΄, 2΄΄-terpyridine)nickel(Ⅱ) chloride decahydrate. Inorg. Chim. Acta 1990, 178, 47–54.  doi: 10.1016/S0020-1693(00)88132-3

    16. [16]

      Choi, C. S.; Mutai, T.; Arita, S.; Araki, K. A novel fluorescent 2,2΄-bipyridine derivative prepared by coupling to a fluorescent aminophenazine-fluorescence properties and response toward various cations. J. Chem. Soc., Perkin Trans. 2 2000, 243–247.

    17. [17]

      Dupouy, G.; Marchivie, M.; Triki, S.; Sala Pala, J.; Salaün, J. Y.; Gómez-García, C. J.; Guionneau, P. The key role of the intermolecular π-π interactions in the presence of spin crossover in neutral [Fe(abpt)2A2] complexes (A = terminal nonoanion N ligand). Inorg. Chem. 2008, 47, 8921–8931.  doi: 10.1021/ic800955r

    18. [18]

      Kattnig, D. R.; Mladenova, B.; Grampp, G.; Kaiser, C.; Heckmann, A.; Lambert, C. Electron paramagnetic resonance spectroscopy of bis(triarylamine) paracyclophanes as model compounds for the intermolecular charge-transfer in solid state materials for optoelectronic applications. J. Phys. Chem. C 2009, 113, 2983–2995.  doi: 10.1021/jp8107705

    19. [19]

      Beves, J. E.; Chwalisz, P.; Constable, E. C.; Housecroft, C. E.; Neuburger, M.; Schaffner, S.; Zampese, J. A. A new polymorph of 4΄-tolyl-2,2΄: 6΄, 2΄΄-terpyridine (ttpy) and the single crystal structures of [Fe(ttpy)2][PF6]2 and [Ru(ttpy)2][PF6]2. Inorg. Chem. Commun. 2008, 11, 1009–1011.  doi: 10.1016/j.inoche.2008.04.033

    20. [20]

      Huang, T. H.; Zhang, M. H.; Gao, C. Y.; Wang, L. T. Synthesis, structures and characterization of metal complexes containing 4΄-phenyl-2,2΄: 6΄, 2΄΄-terpyridine ligands with extended π⋯π interactions. Inorg. Chim. Acta 2013, 408, 91–95.  doi: 10.1016/j.ica.2013.08.024

    21. [21]

      Chen, G. J.; Wang, Z. G.; Kou, Y. Y.; Tian, J. L.; Yan, S. P. Impact of metal on the DNA photo-induced cleavage activity of a family of phterpy complexes. J. Inorg. Biochem. 2013, 122, 49–56.  doi: 10.1016/j.jinorgbio.2013.01.010

    22. [22]

      McMurtrie, J.; Dance, I. Crystal packing in metal complexes of 4΄-phenylterpyridine and related ligands: occurrence of the 2D and 1D terpy embrace arrays. CrystEngComm. 2009, 11, 1141–1149.  doi: 10.1039/b821883h

    23. [23]

      Uma, V.; Vaidyanathan, V. G.; Nair, B. U. Synthesis, structure, and DNA binding studies of copper(Ⅱ) complexes of terpyridine derivatives. Bull. Chem. Soc. Jpn. 2005, 78, 845–850.  doi: 10.1246/bcsj.78.845

    24. [24]

      Roy, S.; Saha, S.; Majumdar, R.; Dighe, R. R.; Chakravarty, A. R. Photo-activated cytotoxicity of a pyrenyl-terpyridine copper(Ⅱ) complex in HeLa cells. Polyhedron 2010, 29, 3251–3256.  doi: 10.1016/j.poly.2010.09.002

    25. [25]

      Maity, B.; Gadadhar, S.; Goswami, T. K.; Karande, A. A.; Chakravarty, A. R. Impact of metal on the DNA photocleavage activity and cytotoxicity of ferrocenyl terpyridine 3d metal complexes. Dalton Trans. 2011, 40, 11904–11913.  doi: 10.1039/c1dt11102g

    26. [26]

      Ma, Z.; Liu, B.; Yang, H.; Xing, Y.; Hu, M.; Sun, J. Reactivity and solid-state photo-luminescence of cadmium compounds constructed from 4΄-phterpy and cadmium salts. J. Coord. Chem. 2009, 62, 3314–3323.  doi: 10.1080/00958970903059992

    27. [27]

      Zhou, X. P.; Ni, W. X.; Zhan, S. Z.; Ni, J.; Li, D.; Yin, Y. G. From encapsulation to polypseudorotaxane:  unusual anion networks driven by predesigned metal bis(terpyridine) complex cations. Inorg. Chem. 2007, 46, 2345–2347.  doi: 10.1021/ic061927o

    28. [28]

      Constable, E. C.; Lewis, J.; Liptrot, M. C.; Raithby, P. R. The coordination chemistry of 4΄-phenyl-2,2΄: 6΄, 2΄΄-terpyridine; the synthesis, crystal and molecular structures of 4΄-phenyl-2,2΄: 6΄, 2΄΄-terpyridine and bis(4΄-phenyl-2,2΄: 6΄, 2΄΄-terpyridine)nickel(Ⅱ) chloride decahydrate. Inorg. Chim. Acta 1990, 178, 47–54.  doi: 10.1016/S0020-1693(00)88132-3

    29. [29]

      Thornley, P. A.; Starkey, J. C.; Zibaseresht, R.; Polson, M. I. J.; Wikaira, J. L.; Hartshorn, R. M. 4΄-(o-toluyl)-2,2΄: 6΄, 2΄΄-terpyridine: synthesis, bromination, complexation, and X-ray crystallographic characterization. J. Coord. Chem. 2011, 64, 145–158.  doi: 10.1080/00958972.2010.546397

    30. [30]

      England, J.; Bill, E.; Weyhermüller, T.; Neese, F.; Atanasov, M.; Wieghardt, K. Molecular and electronic structures of homoleptic six-coordinate cobalt(Ⅰ) complexes of 2,2΄: 6΄, 2΄΄-terpyridine, 2,2΄-bipyridine, and 1, 10-phenanthroline. An experimental and computational study. Inorg. Chem. 2015, 54, 12002–12018.  doi: 10.1021/acs.inorgchem.5b02415

    31. [31]

      Sinha, P.; Kumari, N.; Singh, K.; Singh, K.; Mishra, L. Homoleptic bisterpyridyl complexes: synthesis, characterization, DNA binding, DNA cleavage and topoisomerase Ⅱ inhibition activity. Inorg. Chim. Acta 2015, 432, 71–80.  doi: 10.1016/j.ica.2015.03.026

    32. [32]

      Sjödin, M.; Gätjens, J.; Tabares, L. C.; Thuéry, P.; Pecoraro, V. L.; Un, S. Tuning the redox properties of manganese(Ⅱ) and its implications to the electrochemistry of manganese and iron superoxide dismutases. Inorg. Chem. 2008, 47, 2897–2908.  doi: 10.1021/ic702428s

    33. [33]

      Romain, S.; Duboc, C.; Neese, F.; Rivière, E.; Hanton, L. R.; Blackman, A. G.; Philouze, C.; Leprêtre, J. C.; Deronzier, A.; Collomb, M. N. An unusual stable mononuclear Mn bis-terpyridine complex exhibiting Jahn-Teller compression: electrochemical synthesis, physical characterisation and theoretical study. Chem.-Eur. J. 2009, 15, 980–988.  doi: 10.1002/chem.200801442

    34. [34]

      Schönle, J.; Constable, E. C.; Housecroft, C. E.; Neuburger, M. Tuning peripheral π-stacking motifs in [Cr(tpy)2]3+ domains (tpy = 2,2΄: 6΄, 2΄΄-terpyridine). Inorg. Chem. Commun. 2015, 53, 80–83.  doi: 10.1016/j.inoche.2015.01.014

    35. [35]

      Schönle, J.; Constable, E. C.; Housecroft, C. E.; Prescimone, A.; Zampese, J. A. Homoleptic and heteroleptic complexes of chromium(Ⅲ) containing 4΄-diphenylamino-2,2΄:6΄,2΄΄-terpyridine ligands. Polyhedron 2015, 89, 182–188.  doi: 10.1016/j.poly.2015.01.015

    36. [36]

      Morsali, A. Syntheses and characterization of Pb(trz)nX2 (X = CH3COO, NCS, and n = 1,  2) complexes, and crystal structure of [Pb(trz)2(MeOH)](ClO4)2·H2O. J. Coord. Chem. 2005, 58, 767–774.  doi: 10.1080/00958970500078528

  • 加载中
    1. [1]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    4. [4]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    5. [5]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    6. [6]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    9. [9]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    10. [10]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    11. [11]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    12. [12]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    13. [13]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    14. [14]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    15. [15]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    16. [16]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    17. [17]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    18. [18]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    19. [19]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    20. [20]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

Metrics
  • PDF Downloads(4)
  • Abstract views(386)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return