Citation: Xu LIU, Teng TENG, Lei-Xiang GU, Li-Chao GE, Wen HE, Hui-Yong LIAO, Yi-Jun CHE, Chong-Yao LIANG, Yuan-Yuan DAN, Li-Zhuang CHEN. Facile Synthesis of Layered Sodium Manganese Oxide for Application in Asymmetric Supercapacitor[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 756-764. doi: 10.14102/j.cnki.0254-5861.2011-2496 shu

Facile Synthesis of Layered Sodium Manganese Oxide for Application in Asymmetric Supercapacitor

  • Corresponding author: Yuan-Yuan DAN, danyy@just.edu.cn Li-Zhuang CHEN, clz1977@sina.com
  • # These authors contributed equally to this work
  • Received Date: 12 June 2019
    Accepted Date: 26 November 2019

Figures(5)

  • Layered sodium manganese oxides (LSMOs), with two-dimensional channels for ion diffusion, have been regarded as the promising electrode materials in the application of asymmetric supercapacitors (ASCs). In this work, the layered Na0.5Mn2O4·1.5H2O was synthesized through a facile hydrothermal method by controlling the molar ratio of sodium and manganese. When the molar ratio of sodium to manganese is 3:1, Na0.5Mn2O4·1.5H2O has shown the best capacitance of 369 F/g with current density of 0.5 A/g, and maintained a capacitance of 265 F/g after 2000 cycles. The asymmetric supercapacitor consists of the sodium manages oxides as the positive electrode and active carbon (AC) as the negative electrode in 1 mol/L Na2SO4 solution. The voltage of the asymmetric supercapacitor has been expanded to 0~2 V with an energy density of 10.13 Wh/kg at a power density of 500 W/kg based on the total weight of both active electrode materials when the mass ratio of AC to Na0.5Mn2O4·1.5H2O was 3:1.
  • 加载中
    1. [1]

      Wang, Y. J.; Lu, Y.; Chen, K. Y.; Cui, S. Z.; Chen, W. H.; Mi, L. W. Synergistic effect of Co3O4@C@MnO2 nanowire heterostructures for high-performance asymmetry supercapacitor with long cycle life. Electrochim. Acta 2018, 283, 1087–1094.  doi: 10.1016/j.electacta.2018.06.163

    2. [2]

      Li, C.; Balamurugan, J.; Thanh, T. D.; Kim, N. H.; Lee, J. H. 3D hierarchical CoO@MnO2 core-shell nanohybrid for high-energy solid state asymmetric supercapacitors. J. Mater. Chem. A. 2017, 5, 397–408.  doi: 10.1039/C6TA08532F

    3. [3]

      Gong, Q. H.; Li, Y. J.; Huang, H.; Zhang, J.; Gao, T. T.; Zhou, G. W. Shape-controlled synthesis of Ni-CeO2@PANI nanocomposites and their synergetic effects on supercapacitors. Chem. Eng. J. 2018, 344, 290–298.  doi: 10.1016/j.cej.2018.03.079

    4. [4]

      Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577–585.  doi: 10.1002/adfm.201503726

    5. [5]

      Pei, F.; Lin, L. L.; Ou, D. H.; Zheng, Z. M.; Mo, S. G.; Fang, X. L.; Zheng, N. F. Self-supporting sulfur cathodes enabled by two dimensional carbon yolk-shell nanosheets for high energy-density lithium-sulfur batteries. Nat. Commun. 2017, 8, 482–10.  doi: 10.1038/s41467-017-00575-8

    6. [6]

      Luo, D.; Deng, Y. P.; Wang, X. L.; Li, G. R.; Wu, J.; Fu, J.; Lei, W.; Liang, R. L.; Liu, Y. S.; Ding, Y. L.; Yu, A. P.; Chen, Z. W. Tuning shell numbers of transition metal oxide hollow microspheres towards durable and superior lithium storage. Acs Nano 2017, 11, 11521–11530.  doi: 10.1021/acsnano.7b06296

    7. [7]

      Chen, B.; Meng, Y. H.; He, F.; Liu, E. Z.; Shi, C. S.; He, C. N.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Zhao, N. Q. Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped grapheme heterostructure for promising lithium-ion batteries. Nano. Energy 2017, 41, 154–163.  doi: 10.1016/j.nanoen.2017.09.027

    8. [8]

      Fang, Y.; Lv, Y. Y.; Gong, F.; Elzatahry, A. A.; Zheng, G. F.; Zhao, D. Y. Synthesis of 2D-mesoporous-marbon/MoS2 heterostructures with well-defined interfaces for high-performance lithium-ion batteries. Adv. Mater. 2016, 28, 9385–9390.  doi: 10.1002/adma.201602210

    9. [9]

      Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652.  doi: 10.1126/science.1158736

    10. [10]

      Tang, Y. F.; Li, Y. S.; Guo, W. F.; Wang, J.; Li, X. M.; Chen, S. J.; Mu, S. C.; Zhao, Y. F.; Gao, F. M. Highly ordered multi-layered hydrogenated TiO2-Ⅱ phase nanowire arrays negative electrode for 2.4 V aqueous asymmetric supercapacitors with high energy density and long cycle life. J. Mater. Chem. A 2018, 6, 623–632.  doi: 10.1039/C7TA09590B

    11. [11]

      Hu, C. C.; Huang, Y. H.; Chang, K. H. Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors. J. Power Sources 2002, 108, 117–127.  doi: 10.1016/S0378-7753(02)00011-3

    12. [12]

      Kim, B. C.; Wallace, G. G.; Yoon, Y. I.; Ko, J. M.; Too, C. O. Capacitive properties of RuO2 and Ru-Comixed oxide deposited on single-walled carbon nanotubes for high-performance supercapacitors. Synth. Met. 2009, 159, 1389–1392.  doi: 10.1016/j.synthmet.2009.02.037

    13. [13]

      Kim, I. H.; Kim, J. H.; Lee, Y. H.; Kim, K. B. Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications. J. Electrochem. Soc. 2005, 152, A2170–A2178.  doi: 10.1149/1.2041147

    14. [14]

      Lv, Z. S.; Luo, Y. F.; Tang, Y. X.; Wei, J. Q.; Zhu, Z. Q.; Zhou, X. R.; Li, W. L.; Zeng, L.; Zhang, W.; Zhang, Y. Y.; Qi, D. P.; Pan, S. W.; Loh, X. J.; Chen, X. D. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 2018, 30, 1704531.  doi: 10.1002/adma.201704531

    15. [15]

      Liu, P. B.; Zhu, Y. D.; Gao, X. G.; Huang, Y.; Wang, Y.; Qin, S. Y.; Zhang, Y. Q. Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes. Chem. Eng. J. 2018, 350, 79–88.  doi: 10.1016/j.cej.2018.05.169

    16. [16]

      Zhai, T.; Wang, L. M.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q. Y.; Xia, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 2017, 29, 1604167.  doi: 10.1002/adma.201604167

    17. [17]

      Wang, L.; Lu, Y. H.; Liu, J.; Xu, M. W.; Cheng, J. G.; Zhang, D. W.; Goodenough, J. B. A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 2013, 52, 1964–1967.  doi: 10.1002/anie.201206854

    18. [18]

      Pang, H.; Zhang, Y. Z.; Cheng, T.; Lai, W. Y.; Huang, W. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors. Nano. Scale 2015, 7, 16012–16019.

    19. [19]

      Wessells, C. D.; McDowell, M. T.; Peddada, S. V.; Pasta, M.; Huggins, R. A.; Cui, Y. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. Acs Nano. 2012, 6, 1688–1694.  doi: 10.1021/nn204666v

    20. [20]

      Demirel, S.; Oz, E.; Altin, E.; Altin, S.; Bayri, A.; Kaya, P.; Turan, S.; Avci, S. Growth mechanism and magnetic and electrochemical properties of Na0.44MnO2 nanorods as cathode material for Na-ion batteries. Mater. Charact. 2015, 105, 104–112.  doi: 10.1016/j.matchar.2015.05.005

    21. [21]

      Guo, S. H.; Yu, H. J.; Jian, Z. L.; Liu, P.; Zhu, Y. B.; Guo, X. W.; Chen, M. W.; Ishida, M.; Zhou, H. S. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. ChemSusChem. 2014, 7, 2115–2121.  doi: 10.1002/cssc.201402138

    22. [22]

      Fu, B.; Zhou, X.; Wang, Y. P. High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries. J. Power Sources 2016, 310, 102–108.  doi: 10.1016/j.jpowsour.2016.01.101

    23. [23]

      Huang, J. J.; Luo, J. Composites of sodium manganese oxides with enhanced electrochemical performance for sodium-ion batteries: tailoring properties via controlling microstructure. Sci. China Technol. Sc. 2016, 59, 1042–1047.  doi: 10.1007/s11431-016-6067-5

    24. [24]

      Smith, K. C.; Dmello, R. Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-intercalation: porous-electrode modeling. J. Electrochem. Soc. 2016, 163, A530–A539.  doi: 10.1149/2.0761603jes

    25. [25]

      Smith, K. C. Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination. Electrochim. Acta 2017, 230, 333–341.  doi: 10.1016/j.electacta.2017.02.006

    26. [26]

      Pasta, M.; Wessells, C. D.; Cui, Y.; Mantia, F. L. A desalination battery. Nano. Lett. 2012, 12, 839–843.  doi: 10.1021/nl203889e

    27. [27]

      Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2019, 118, 9233–9280.

    28. [28]

      Karikalan, N.; Karuppiah, C.; Chen, S. M.; Velmurugan, M.; Gnanaprakasam, P. Three-dimensional fibrous network of Na0.21MnO2 for aqueous. Chem. Eur. J. 2017, 23, 2379–2386.  doi: 10.1002/chem.201604878

    29. [29]

      Lin, S. C.; Lu, Y. T.; Chien, Y. A.; Wang, J. A.; Chen, P. Y.; Ma, C. C. M.; Hu, C. C. Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power and energy densities. J. Power Sources 2018, 393, 1–10.  doi: 10.1016/j.jpowsour.2018.05.019

    30. [30]

      Kim, S.; Yoon, H.; Shin, D.; Lee, J.; Yoon, J. Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide. J. Colloid Interf. Sci. 2017, 506, 644–648.  doi: 10.1016/j.jcis.2017.07.054

    31. [31]

      Wallas, J. M.; Young, M. J.; Sun, H. X.; George, S. M. Efficient capacitive deionization using thin film sodium manganese oxide. J. Electrochem. Soc. 2018, 165, A2330–A2339.  doi: 10.1149/2.0751810jes

    32. [32]

      Boruah, B. D.; Maji, A.; Misra, A. Synergistic effect in heterostructure of ZnCo2O4 and hydrogenated zinc oxide nanorods for high capacitive response. Nano Scale. 2017, 9, 9411–9420.

    33. [33]

      Kuang, M.; Wen, Z. Q.; Guo, X. L.; Zhang, S. Z.; Zhang, Y. X. Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors. J. Power Sources 2014, 270, 426–433.  doi: 10.1016/j.jpowsour.2014.07.144

    34. [34]

      Jagadale, A. D.; Guan, G. Q.; Li, X. M.; Du, X.; Ma, X. L.; Hao, X. G.; Abudula, A. Ultrathin nanoflakes of cobalt-manganese layered double hydroxide with high reversibility for asymmetric supercapacitor. J. Power Sources 2016, 306, 526–534.  doi: 10.1016/j.jpowsour.2015.12.097

    35. [35]

      Jagadale, A. D.; Kumbhar, V. S.; Dhawale, D. S.; Lokhande, C. D. Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes. Electrochim. Acta 2013, 98, 32–38.  doi: 10.1016/j.electacta.2013.02.094

  • 加载中
    1. [1]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    2. [2]

      Bing JiangGang ZouBi LuoYan GuoJingru LiWendi ZhangQianxiao FanLehao LiuLihua ChuQiaobao ZhangMeicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801

    3. [3]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    4. [4]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    5. [5]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    6. [6]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    7. [7]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    8. [8]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    9. [9]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    10. [10]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    11. [11]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    12. [12]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    13. [13]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    14. [14]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    15. [15]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    16. [16]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    17. [17]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    18. [18]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    19. [19]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    20. [20]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

Metrics
  • PDF Downloads(1)
  • Abstract views(299)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return