Citation: Wei-Sheng LIN, Jian-Gen HUANG, Yun-Xiang WEN, Hui LUO, Wen-Tong CHEN. Photophysical Performance and Energy Transfer Mechanism of a 1-D Chain-like Complex[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 747-755. doi: 10.14102/j.cnki.0254-5861.2011-2486 shu

Photophysical Performance and Energy Transfer Mechanism of a 1-D Chain-like Complex

  • Corresponding author: Jian-Gen HUANG, hjg0468@163.com Wen-Tong CHEN, wtchen_2000@aliyun.com
  • Dedicated to Professor Jin-Shun Huang on the occasion of his 80th birthday
  • Received Date: 3 June 2019
    Accepted Date: 26 November 2019

    Fund Project: the NNSFC 21361013the NNSFC 31460488NSF of Fujian 2018J01447Jiangxi Provincial Department of Education's Item of Science and Technology GJJ170637the Open Foundation 20180008

Figures(8)

  • By means of solvothermal reactions, a novel lanthanide-mercury compound, {[Ho(IA)3(H3O)2]2n[2n(HgCl4)][n(HgCl5)]}·3nH3nH2O (1, HIA = isonicotinc acid) was prepared and structurally characterized by single-crystal X-ray diffraction. Complex 1 crystallizes in the C2/c space group of monoclinic system with a = 24.2147(5), b = 20.8106(4), c = 15.3060(3) Å, β = 128.326(2)°, V = 6050.8(2) Å3, C36H45Cl13Hg3Ho2N6O20, Mr = 2274.26, Z = 4, Dc = 2.497 g/cm3, μ(Mo) = 10.817 mm–1 and F(000) = 4232. It exhibits a one-dimensional (1-D) chain-like structure. Solid-state photoluminescence measurement shows that it displays brown light emission bands. These emission bands originate from the characteristic emissions of the 4f electrons intrashell transitions of 5S25I8 and 5F55I8 of the holmium(Ⅲ) ions in 1. The photoluminescence emission energy transfer mechanism is elucidated by the energy level diagrams of the holmium(Ⅲ) ions and isonicotinic acid ligand. Complex 1 has CIE chromaticity coordinates of (0.4361, 0.4992). Solid-state UV/Vis diffuse reflectance spectra reveal that it possesses wide optical band gap of 4.94 eV.
  • 加载中
    1. [1]

      Qiu, L. Y.; Yu, C. F.; Wang, X. L.; Xie, Y. B.; Kirillov, A. M.; Huang, W.; Li, J. P.; Gao, P.; Wu, T.; Gu, X. W.; Nie, Q.; Wu, D. Y. Tuning the solid-​state white light emission of postsynthetic lanthanide-​encapsulated double-​layer MOFs for three-​color luminescent thermometry applications. Inorg. Chem. 2019, 58, 4524–4533.  doi: 10.1021/acs.inorgchem.9b00084

    2. [2]

      Zhao, L. H.; Chen, H. M.; Yang, A. H.; Wu, D. F.; Gou, J.; Cui, J. Z.; Gao, H. L. Synthesis, characterization and properties of lanthanide complexes with different ancillary ligands. Inorg. Chim. Acta 2019, 490, 240–245.  doi: 10.1016/j.ica.2019.03.030

    3. [3]

      Yao, X.; An, G. H.; Li, Y. X.; Yan, P. F.; Li, W. Z.; Li, G. M. Effect of nuclearity and symmetry on the single-​molecule magnets behavior of seven-​coordinated β-​diketonate Dy(Ⅲ) complexes. J. Solid State Chem. 2019, 274, 295–302.  doi: 10.1016/j.jssc.2019.03.044

    4. [4]

      Yu, L. H.; Li, G. W.; Liu, Y. S.; Jiang, F. L.; Hong, M. C. Lanthanide-​doped KGd2F7 nanocrystals: controlled synthesis, optical properties, and spectroscopic identification of the optimum core​/shell architecture for highly enhanced upconverting luminescence. Cryst. Growth Des. 2019, 19, 2340–2349.  doi: 10.1021/acs.cgd.9b00040

    5. [5]

      D'Vries, R. F.; Gomez, G. E.; Mondragon, L. P.; Onna, D.; Barja, B. C.; Soler-Illia, G. J. A. A.; Ellena, J. 1D lanthanide coordination polymers based on lanthanides and 4'-​hydroxy-​4-​biphenylcarboxylic acid: synthesis, structures and luminescence properties. J. Solid State Chem. 2019, 274, 322–328.  doi: 10.1016/j.jssc.2019.02.043

    6. [6]

      Xu, L.; Pu, N.; Li, Y. Z.; Wei, P. P.; Sun, T. X.; Xiao, C. L.; Chen, J.; Xu, C. Selective separation and complexation of trivalent actinide and lanthanide by a tetradentate soft-​hard donor ligand: solvent extraction, spectroscopy, and DFT calculations. Inorg. Chem. 2019, 58, 4420–4430.  doi: 10.1021/acs.inorgchem.8b03592

    7. [7]

      Ren, K.; Wu, S. H.; Guo, X. F.; Wang, H. Lanthanide organic framework as a reversible luminescent sensor for sulfamethazine antibiotics. Inorg. Chem. 2019, 58, 4223–4229.  doi: 10.1021/acs.inorgchem.8b03284

    8. [8]

      Wang, K.; Zhang, J. Q.; Lu, J.; Jing, P.; Li, L. C. Slow magnetic relaxation in Cu–Ln heterometallic Schiff base complexes containing Ln(hfac)​-​4 as counterions magnetic relaxation in Cu–Ln heterometallic Schiff base complexes containing Ln(hfac)​-​4 as counterions. Inorg. Chim. Acta 2019, 490, 51–56.  doi: 10.1016/j.ica.2019.02.030

    9. [9]

      Martin-Caballero, J.; Artetxe, B.; Reinoso, S.; San Felices, L.; Vitoria, P.; Larranaga, A.; Vilas, J. L.; Gutierrez-Zorrilla, J. M. Thermostructural behavior in a series of lanthanide-​containing polyoxotungstate hybrids with copper(Ⅱ) complexes of the tetraazamacrocycle cyclam: a single-​crystal-​to-​single-​crystal transformation study. Inorg. Chem. 2019, 58, 4365–4375.  doi: 10.1021/acs.inorgchem.8b03471

    10. [10]

      Clementino, R. F. P.; de Souza Santos, A. B.; Marques, O. J. B. J.; Ratkovski, D. R.; Gatto, C. C.; Malvestiti, I.; de Araujo Machado, F. L.; Falcao, E. H. L. Structural description, luminescent and magnetic properties of novel 2-​D coordination polymers containing thiazolo[5, ​4-​d]​thiazole rings and trivalent lanthanide ions. J. Solid State Chem. 2018, 268, 94–101.  doi: 10.1016/j.jssc.2018.07.033

    11. [11]

      Cerfontaine, S.; Marcelis, L.; Laramee-Milette, B.; Hanan, G. S.; Loiseau, F.; De Winter, J.; Gerbaux, P.; Elias, B. Converging energy transfer in polynuclear Ru(Ⅱ) multiterpyridine complexes: significant enhancement of luminescent properties. Inorg. Chem. 2018, 57, 2639–2653.  doi: 10.1021/acs.inorgchem.7b03040

    12. [12]

      Wang, W.; Peng, D. F.; Zhang, H. L.; Yang, X. H.; Pan, C. F. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging. Opt. Commun. 2017, 395, 24–28.  doi: 10.1016/j.optcom.2016.03.046

    13. [13]

      Kuang, H. M.; Huang, J. G.; Lin, L. Z.; Zhong, Q. X.; Chen, W. T. Structure and luminescence of two new mercury-​lanthanide complexes. Inorg. Chim. Acta 2019, 489, 48–53.  doi: 10.1016/j.ica.2019.02.006

    14. [14]

      Sheldrick, G. M. SHELXS, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.

    15. [15]

      Yi, X. G.; Zhang, Z. X.; Chen, W. T.; Lin, L. Z.; Chen, H. L. Photoluminescence and semiconductor properties of two novel lanthanide-mercury compounds with one-dimensional chain-like structures. J. Solid State Chem. 2018, 266, 16–22.  doi: 10.1016/j.jssc.2018.07.004

    16. [16]

      Lin, L. Z.; Zhong, Q. X.; Hong, J. T.; Chen, H. L.; Chen, W. T. Syntheses, structures, photoluminescence and semiconductor properties of two novel mercury-lanthanide complexes with a three-dimensional open framework. Inorg. Chim. Acta 2018, 479, 30–35.  doi: 10.1016/j.ica.2018.04.039

    17. [17]

      Luo, Q. Y.; Luo, H.; Kuang, H. M.; Chen, W. T.; Wen, Y. X. A novel samarium material: synthesis, structure, photophysical properties and photoluminescence energy transfer mechanism. J. Solid State Chem. 2019, 270, 200–204.  doi: 10.1016/j.jssc.2018.09.040

    18. [18]

      Gupta, S. K.; Langley, S. K.; Sharma, K.; Murray, K. S.; Murugavel, R. Pentanuclear lanthanide mono-​organophosphates: synthesis, structure, and magnetism. Inorg. Chem. 2017, 56, 3946–3960.  doi: 10.1021/acs.inorgchem.6b03014

    19. [19]

      Zhang, L. Y.; Lu, L. P.; Zhu, M. L.; Feng, S. S. Self-​assembly of lanthanide(Ⅲ) coordination polymers from a bifunctional 2-​(pyridin-​2-​yl)​-​1H-​imidazole-​4, ​5-​dicarboxylate ligand with the assistance of oxalate: syntheses, structures, luminescence, and magnetic properties. CrystEngComm. 2017, 19, 1953–1964.  doi: 10.1039/C7CE00149E

    20. [20]

      Coban, M. B.; Amjad, A.; Aygun, M.; Kara, H. Sensitization of HoIII and SmIII luminescence by efficient energy transfer from antenna ligands: magnetic, visible and NIR photoluminescence properties of GdIII, HoIII and SmIII coordination polymers. Inorg. Chim. Acta 2017, 455, 25–33.  doi: 10.1016/j.ica.2016.10.010

    21. [21]

      Wu, J.; Li, X. L.; Zhao, L.; Guo, M.; Tang, J. Enhancement of magnetocaloric effect through fixation of carbon dioxide: molecular assembly from Ln4 to Ln4 cluster pairs. Inorg. Chem. 2017, 56, 4104–4111.  doi: 10.1021/acs.inorgchem.7b00094

    22. [22]

      An, L.; Zhou, J.; Zou, H. H.; Xiao, H.; Zhao, R.; Ding, Q. Syntheses, structures and properties of a series of new lanthanide chalcoarsenates(Ⅲ) containing crown-​shaped [As3Q6]​3- (Q = S, Se) clusters. J. Alloy. Compd. 2017, 702, 594–600.  doi: 10.1016/j.jallcom.2017.01.284

    23. [23]

      Schmidt, S. F. M.; Koo, C.; Mereacre, V.; Park, J.; Heermann, D. W.; Kataev, V.; Anson, C. E.; Prodius, D.; Novitchi, G.; Klingeler, R.; Powell, A. K. A three-​pronged attack to investigate the electronic structure of a family of ferromagnetic Fe4Ln2 cyclic coordination clusters: a combined magnetic susceptibility, high-​field​/high-​frequency electron paramagnetic resonance, and 57Fe Mössbauer study. Inorg. Chem. 2017, 56, 4796–4806.  doi: 10.1021/acs.inorgchem.6b02682

    24. [24]

      Zhang, J. W.; Jiang, Y.; Xie, Y. R.; Chu, J.; Liu, B. Q. Syntheses, structures, photoluminescence, and magnetism of a series of discrete heavy lanthanide complexes based on a tricarboxylic acid. Inorg. Chim. Acta 2016, 453, 257–262.  doi: 10.1016/j.ica.2016.08.020

    25. [25]

      Ridenour, J. A.; Carter, K. P.; Butcher, R. J.; Cahill, C. L. RE-​p-​halobenzoic acid-​terpyridine complexes, part Ⅱ: structural diversity, supramolecular assembly, and luminescence properties in a series of p-​bromobenzoic acid rare-​earth hybrid materials. CrystEngComm. 2017, 19, 1172–1189.  doi: 10.1039/C6CE02355J

    26. [26]

      Botezat, O.; van Leusen, J.; Ch Kravtsov, V.; Kogerler, P.; Baca, S. G. Ultralarge 3d​/4f coordination wheels: from carboxylate​/amino alcohol-​supported {Fe4Ln2} to {Fe18Ln6} rings. Inorg. Chem. 2017, 56, 1814–1822.  doi: 10.1021/acs.inorgchem.6b02100

    27. [27]

      Rojas-Hernandez, R. E.; Santos, L. F.; Almeida, R. M. Tb3+​/Yb3+ doped aluminosilicate phosphors for near infrared emission and efficient down-​conversion. J. Lumin. 2018, 197, 180–186.  doi: 10.1016/j.jlumin.2018.01.020

    28. [28]

      Gao, Y.; Sun, X. R.; Feng, Z. S.; Zhu, L. Y.; Zhang, J.; Gao, W. L.; Zhou, X. J.; Cong, R. H.; Yang, T. Tb3+ and Eu3+ co-​doped Ba6Bi9B79O138: color-​tunable phosphors by utilizing the host-​sensitization effect of Bi3+ and enhancement of red emission upon heating. New J. Chem. 2017, 41, 2037–2045.  doi: 10.1039/C6NJ03603A

    29. [29]

      Shi, H. W.; Zhu, Y. P.; Zhao, Y. M.; Liu, C.; Ren, X. Z.; Hao, J. G.; Li, W. Field-​induced large strain and strong green photoluminescence in (Ho, ​Sb)​-​modified (Bi0. 5Na0. 5)​0. 945Ba0. 065TiO3 multifunctional ferroelectric ceramics. J. Alloy. Compd. 2018, 767, 666–674.  doi: 10.1016/j.jallcom.2018.07.135

    30. [30]

      Krishnan, R.; Thirumalai, J. Up​/down conversion luminescence properties of (Na0. 5Gd0. 5)​MoO4: Ln3+ (Ln = Eu, Tb, Dy, Yb​/Er, Yb​/Tm, and Yb/Ho) microstructures: synthesis, morphology, structural and magnetic investigation. New J. Chem. 2014, 38, 3480–3491.  doi: 10.1039/C4NJ00165F

    31. [31]

      Barrera, E. W.; Pujol, M. C.; Carvajal, J. J.; Mateos, X.; Sole, R.; Massons, J.; Speghini, A.; Bettinelli, M.; Cascales, C.; Aguilo, M.; Diaz, F. White light upconversion in Yb-​sensitized (Tm, Ho)​-​doped KLu(WO4)​2 nanocrystals: the effect of Eu incorporation. Phys. Chem. Chem. Phys. 2014, 16, 1679–1686.  doi: 10.1039/C3CP53847H

    32. [32]

      Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 1953, 21, 836–850.  doi: 10.1063/1.1699044

    33. [33]

      Sato, S.; Wada, M. Relations between intramolecular energy transfer efficiencies and triplet state energies in rare earth β-​diketone chelates. Bull. Chem. Soc. Jpn. 1970, 43, 1955–1962.  doi: 10.1246/bcsj.43.1955

    34. [34]

      Xu, B.; Yan, B. Photophysical properties of novel lanthanide (Tb3+, Dy3+, Eu3+) complexes with long chain para-​carboxyphenol ester p-​L-​benzoate (L = dodecanoyloxy, myristoyloxy, palmitoyloxy and stearoyloxy). Spectrochim. Acta A 2007, 66, 236–242.  doi: 10.1016/j.saa.2006.02.047

    35. [35]

      Huang, F. Q.; Mitchell, K.; Ibers, J. A. New layered materials: syntheses, structures, and optical and magnetic properties of CsGdZnSe3, CsZrCuSe3, CsUCuSe3, and BaGdCuSe3. Inorg. Chem. 2001, 40, 5123–5126.  doi: 10.1021/ic0104353

  • 加载中
    1. [1]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    2. [2]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    3. [3]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    4. [4]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    5. [5]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    6. [6]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    7. [7]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    8. [8]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    9. [9]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    10. [10]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    11. [11]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    16. [16]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    17. [17]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    18. [18]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    19. [19]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    20. [20]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

Metrics
  • PDF Downloads(2)
  • Abstract views(292)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return