Citation: Yao ZHAO, Jun-Hua YOU, Wen-Quan LV, Ming FANG. Synthesis and Absorption Properties of Leaf-like Nd2Cu2O4+δ via a Coordination Complex Method with [NdCu(3,4-pdc)2(OAc)(H2O)5]·6.5H2O Precursor[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 737-746. doi: 10.14102/j.cnki.0254-5861.2011-2484 shu

Synthesis and Absorption Properties of Leaf-like Nd2Cu2O4+δ via a Coordination Complex Method with [NdCu(3,4-pdc)2(OAc)(H2O)5]·6.5H2O Precursor

  • Corresponding author: Jun-Hua YOU, youjunhua168@163.com Ming FANG, fangmingchem@163.com
  • Received Date: 3 June 2019
    Accepted Date: 9 September 2019

    Fund Project: Liaoning Province College Innovative Talents Fund Project LCR2018016the Natural Science Foundation of Liaoning Province 2019-MS-244

Figures(6)

  • Nd2Cu2O4+δ nanosheets were synthesized via coordination complex method (CCM) by using [NdCu(3,4-pdc)2(OAc)(H2O)5]·6.5H2O (1,3,4-pdc = 3,4-pyridinedicarboxylic acid) as the precursor. Compared to the particles prepared by SSM (simple solution method), Nd2Cu2O4+δ prepared by CCM showed leaf-like morphology composed of nanosheets with an average thickness of 50~80 nm and a BET surface area up to 17.9 m2/g. The Nd2Cu2O4+δ samples exhibit selective adsorption towards malachite green (MG) with significant Qm (maximum adsorption capacity) values reaching up 1.55 g/g at room temperature, and the thermodynamic parameters of adsorption process were obtained. In addition, the properties of selective adsorption of the prepared samples were investigated by temperature change tests.
  • 加载中
    1. [1]

      He, Y. H.; Chen, Z. X.; Xu, J. J.; Wu, Y.; Xiao, G. C. Solvothermal synthesis of ZnIn2S4 by alcohol solvents and visible light photocatalytic activity on selective oxidation and dye degradation. Chin. J. Struct. Chem. 2018, 37, 753−762.

    2. [2]

      Zhang, Y. L.; Yang, J.; Yu, X. J. Preparation, characterization, and adsorption-photocatalytic activity of nano TiO2 embedded in diatomite synthesis materials. Rare Met. 2017, 36, 987−991.  doi: 10.1007/s12598-014-0290-7

    3. [3]

      Xue, H.; Ding, N.; Lai, S. W.; Chen, Q. H.; Liu, X. P.; Qian, Q. R. Rapid microwave-assisted hydrothermal synthesis of Bi0.76Sb1.24S3 and its application in the photocatalytic degradation of pollutants by visible light irradiation. Chin. J. Struct. Chem. 2017, 36, 59−65.

    4. [4]

      Azad, F. N.; Ghaedi, M.; Dashtian, K.; Hajati, S.; Goudarzi, A.; Jamshidi, M. Enhanced simultaneous removal of malachite green and safranin O by ZnO nanorod-loaded activated carbon: modeling, optimization and adsorption isotherms. New J. Chem. 2015, 39, 7998−8005.  doi: 10.1039/C5NJ01281C

    5. [5]

      Asfaram, A.; Ghaedi, M.; Goudarzi, A.; Soylak, M.; Langroodi, M. S. Magnetic nanoparticle based dispersive micro-solid-phase extraction for the determination of malachite green in water samples: optimized experimental design. New J. Chem. 2015, 39, 9813−9823.  doi: 10.1039/C5NJ01730K

    6. [6]

      Huang, P.; Zhao, P.; Dai, X.; Hou, X.; Zhao, L.; Liang, N. Trace determination of antibacterial pharmaceuticals in fishes by microwave-assisted extraction and solidphase purification combined with dispersive liquid-liquid microextraction followed by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 2016, 1011, 136−144.  doi: 10.1016/j.jchromb.2015.12.059

    7. [7]

      Gao, Q.; Luo, J.; Wang, X. Y.; Gao, C. X.; Ge, X. Q. Novel hollow alpha-Fe2O3 nanofibers via electrospinning for dye adsorption. Nano. Res. Lett. 2015, 10, 176−8.  doi: 10.1186/s11671-015-0874-7

    8. [8]

      Wu, Y. T.; Li, M. L.; Yuan, J.; Wang, X. F. Synthesis and characterizations of metastable Bi2SiO5 powders with a synergistic effect of adsorption and photocatalysis. Appl. Phys. A 2017, 123, 543−10.  doi: 10.1007/s00339-017-1144-6

    9. [9]

      Huang, D.; Hu, C.; Zeng, G.; Cheng, M.; Xu, P.; Gong, X.; Wang, R.; Xue, W. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci. Total Environ. 2017, 574, 1599−1610.  doi: 10.1016/j.scitotenv.2016.08.199

    10. [10]

      Yu, M.; Li, J.; Wang, L. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem. Eng. J. 2017, 310, 300−306.  doi: 10.1016/j.cej.2016.10.121

    11. [11]

      Shaw, R.; Sharma, R.; Tiwari, S.; Tiwari, S. K. Surface engineered zeolite: an active interface for rapid adsorption and degradation of toxic contaminants in water. ACS Appl. Mater. Inter. 2016, 8, 12520−12527.  doi: 10.1021/acsami.6b01754

    12. [12]

      Tian, Y.; Liu, P.; Wang, X. F.; Lin, H. S. Adsorption of malachite green from aqueous solutions onto ordered mesoporous carbons. Chem. Eng. J. 2011, 171, 1263−1269.  doi: 10.1016/j.cej.2011.05.040

    13. [13]

      Xu, R.; Jia, M.; Zhang, Y. L.; Li, F. T. Sorption of malachite green on vinyl-modified mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes. Micro. Meso. Mater. 2012, 149, 111−118.  doi: 10.1016/j.micromeso.2011.08.024

    14. [14]

      Hasan, Z.; Jhung, S. H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015, 283, 329−339.  doi: 10.1016/j.jhazmat.2014.09.046

    15. [15]

      Lee, H. J.; Cho, W.; Lim, E.; Oh, M. One-pot synthesis of magnetic particle-embedded porous carbon composites from metal-organic frameworks and their sorption properties. Chem. Commun. 2014, 50, 5476−5479.  doi: 10.1039/c4cc01914h

    16. [16]

      Zhang, C.; Ye, F.; Shen, S.; Xiong, Y.; Su, L.; Zhao, S. From metal-organic frameworks to magnetic nanostructured porous carbon composites: towards highly efficient dye removal and degradation. RSC Adv. 2015, 5, 8228−8235.  doi: 10.1039/C4RA15942J

    17. [17]

      Wang, L.; Ke, F.; Zhu, J. Metal-organic gel templated synthesis of magnetic porous carbon for highly efficient removal of organic dyes. Dalton Trans. 2016, 45, 4541−4547.  doi: 10.1039/C5DT04260G

    18. [18]

      Yang, Y.; Zhang, Y.; Sun, C. J.; Li, X.; Zhang, W.; Ma, X.; Ren, Y.; Zhang, X. Heterobimetallic metal-organic framework as a precursor to prepare a nickel/nanoporous carbon composite catalyst for 4-nitrophenol reduction. ChemCatChem. 2014, 6, 3084−3090.  doi: 10.1002/cctc.201402607

    19. [19]

      Liu, X. W.; Guo, R.; Liu, H.; Yu, Y. Q.; Qi, X. W.; Xu, J. Y.; Xie, C. Z. Two series of novel 3D potentially porous heterometallic Cu−Ln coordination frameworks assembled by 3,4-pyridinedicarboxylic acid with different topologies and channels: syntheses, structures, luminescence and magnetic properties. RSC Adv. 2015, 5, 15059−15068.  doi: 10.1039/C4RA13533D

    20. [20]

      You, J. H.; Guo, Y. Z.; Guo, R.; Liu, X. W. A review of visible light-active photocatalysts for water disinfection: Features and prospects. Chem. Eng. J. 2019, 372, 624−641.  doi: 10.1016/j.cej.2019.04.192

    21. [21]

      Sheldrick, G. M. SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement. Göttingen University, Germany 1997.

    22. [22]

      Yang, H. Q.; Liu, S. W.; Cao, L. H.; Jiang, S. H.; Huo, H. Q. Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J. Mater. Chem. A 2018, 6, 21216−21224.  doi: 10.1039/C8TA05109G

    23. [23]

      Jiang, S. H.; Uch, B.; Agarwal, S.; Greiner, A. Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl. Mater. Inter. 2017, 9, 32308−32315.  doi: 10.1021/acsami.7b11045

    24. [24]

      Duan, G. G.; Liu, S. W.; Jiang, S. H.; Hou, H. Q. High-performance polyamide-imide films and electrospun aligned nanofibers from an amidecontaining diamine. J. Mater. Sci. 2019, 54, 6719−6727.  doi: 10.1007/s10853-019-03326-w

    25. [25]

      Xu, H. B.; Jiang, S. H.; Ding, C. H.; Zhu, Y. M.; Li, J. J.; Hou, H. Q. High strength and high breaking load of single electrospun polyimide microfiber from water soluble precursor. Mater. Lett. 2017, 201, 82−84.  doi: 10.1016/j.matlet.2017.05.019

    26. [26]

      Liu, X. W.; Wang, R. C.; Ni, Z. Y.; Zhou, W. L.; Du, Y. C.; Ye, Z. Q.; Guo, R. Facile synthesis and selective adsorption properties of Sm2CuO4 for malachite green: kinetics, thermodynamics and DFT studies. J. Alloy. Compd. 2018, 743, 17−25.  doi: 10.1016/j.jallcom.2018.01.320

    27. [27]

      Lv, D.; Wang, R. X.; Tang, G. S.; Mou, Z. P.; Lei, J. D.; Han, J. Q.; Smedt, S. D.; Xiong, R. H.; Huang, C. B. Ecofriendly electrospun membranes loaded with visible-light responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl. Mater. Inter. 2019, 11, 12880−12889.  doi: 10.1021/acsami.9b01508

    28. [28]

      Ding, Q. Q.; Xu, X. W.; Yue, Y. Y.; Mei, C. T.; Huang, C. B.; Jiang, S. H.; Wu, Q. L.; Han, J. Q. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl. Mater. Inter. 2018, 10, 27987−28002.  doi: 10.1021/acsami.8b09656

    29. [29]

      Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603−619.  doi: 10.1351/pac198557040603

    30. [30]

      Yousefi, T.; Torab-Mostaedi, M.; Aghaei, A.; Ghasemi-Mobtaker, H. Facile synthesis, morphology and structure of Dy2O3 nanoparticles through electrochemical precipitation. Rare Met. 2016, 35, 637−642.  doi: 10.1007/s12598-015-0448-y

    31. [31]

      Biesinger, M. C.; Lau, L. W. M.; Gerson, A. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887−898.  doi: 10.1016/j.apsusc.2010.07.086

    32. [32]

      Jiang, J. Z.; Wang, Y. L.; Wang, C. Y.; Bai, L. M.; Li, X.; Li, Y. B. Magnesium hydroxide whisker modified via in situ copolymerization of n-butyl acrylate and maleic anhydride. Rare Met. 2017, 36, 997−1002.  doi: 10.1007/s12598-016-0826-0

    33. [33]

      Guo, R.; Yan, A. G.; Xu, J. J.; Xu, B. T.; Li, T. T.; Liu, X. W.; Yi, T. F.; Luo, S. H. Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: A discussion on photocatalysis mechanism. J. Alloy. Compd. 2020, 817, 153245−12.

    34. [34]

      Liu, X. W.; Ni, Z. Y.; He, Y.; Su, N.; Guo, R.; Wang, Q.; Yi, T. F. Ultrasound-assisted two-step water-bath synthesis of g-C3N4/BiOBr composites: visible light-driven photocatalysis, sterilization, and reaction mechanism. New. J. Chem. 2019, 43, 8711−8721.  doi: 10.1039/C9NJ01398A

    35. [35]

      Tian, Y.; Liu, P.; Wang, X. F.; Lin, H. S. Adsorption of malachite green from aqueous solutions onto ordered mesoporous carbons. Chem. Eng. J. 2011, 171, 1263−1269.  doi: 10.1016/j.cej.2011.05.040

    36. [36]

      Deshpande, P. A.; Polisetti, S.; Madras, G. Rapid synthesis of ultrahigh adsorption capacity zirconia by a solution combustion technique. Langmuir. 2011, 27, 3578−3587.  doi: 10.1021/la104674k

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    3. [3]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    4. [4]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    5. [5]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    8. [8]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    9. [9]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    10. [10]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    11. [11]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    12. [12]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    13. [13]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    14. [14]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    15. [15]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    16. [16]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    17. [17]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    18. [18]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    19. [19]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    20. [20]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

Metrics
  • PDF Downloads(1)
  • Abstract views(268)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return