Citation: Jia-Wen YING, Qun SUN, Li-Fang YANG, Mei-Rong KE, Jian-Dong HUANG. Synthesis, Spectroscopic Properties, and Photodynamic Anticancer Activities of Novel Arginine-modified Silicon(IV) Phthalocyanines[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 66-78. doi: 10.14102/j.cnki.0254-5861.2011-2477 shu

Synthesis, Spectroscopic Properties, and Photodynamic Anticancer Activities of Novel Arginine-modified Silicon(IV) Phthalocyanines

  • Corresponding author: Mei-Rong KE, kemeirong@fzu.edu.cn Jian-Dong HUANG, jdhuang@fzu.edu.cn
  • Received Date: 29 May 2019
    Accepted Date: 17 September 2019

    Fund Project: the Marine High-Tech Programs of Fujian Province, China 2016–14the Regional Marine Economic Innovation and Development Demonstration Project of Fujian 2012FJ14the National Natural Science Foundation of China 21301031the National Natural Science Foundation of China U1705282the National Natural Science Foundation of China 21473033

Figures(8)

  • We design and synthesize a series of novel silicon(IV) phthalocyanines (SiPcs, 1a, 2a, 1b, and 2b) axially conjugated with arginine or arginine-containing oligopeptides (Arg-Arg, Cys-Arg, Cys-Arg-Arg) through ester or ether linkers to demonstrate the effects of substituents and coupling ways on the spectral behaviors and photodynamic activities. The ester-linked SiPcs (1a and 2a) show slight red-shift, higher fluorescence emission and singlet oxygen generation compared to the ether-linked analogues (1b and 2b) due to the stronger electron-withdrawing ability of the ester group, suggesting that electronic effect of the linkers plays an important role in their spectral properties. The introduction of arginine could effectively reduce the aggregation of phthalocyanine in aqueous solutions. With higher cellular uptake and plasma membrane localization ability, 1b and 2b exhibit significantly higher photocytotoxicity against both HepG2 and Hela cells. Moreover, the in vivo fluorescence imaging suggests that 2b is the most specific toward H22 tumor-bearing ICR mice, and it shows efficient tumor growth inhibition with the tumor inhibition rate up to 93%. Thus, this work would provide a new reference for the development of phthalocyanine-based photosensitizers.
  • 加载中
    1. [1]

      Monro, S.; Colon, K. L.; Yin, H.; Roque, J.; Konda, P.; Gujar, S.; Thummel, R. P.; Lilge, L.; Cameron, C. G. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2019, 119, 797−828.  doi: 10.1021/acs.chemrev.8b00211

    2. [2]

      Bolze, F.; Jenni, S.; Sour, A.; Heitz, V. Molecular photosensitisers for two-photon photodynamic therapy. Chem. Commun. 2017, 53, 12857−12877.  doi: 10.1039/C7CC06133A

    3. [3]

      Dennis, E. J. G. J. D.; Dai, F.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer. 2003, 3, 380−387.  doi: 10.1038/nrc1071

    4. [4]

      Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Stephen, M. H. D.; Michael, R. H.; Asta, J.; David, K.; Mladen, K.; Johan, M.; Pawel, M.; Dominika, N. M.; Jacques, P.; Brian, C. W.; Jakub, G. Photodynamic therapy of cancer: an update. CA. Cancer J. Clin. 2011, 61, 250−281.  doi: 10.3322/caac.20114

    5. [5]

      Lan, G.; Ni, K.; Lin, W. Nanoscale metal-organic frameworks for phototherapy of cancer. Coord. Chem. Rev. 2019, 379, 65−81.  doi: 10.1016/j.ccr.2017.09.007

    6. [6]

      Liu, Y.; Meng, X.; Bu, W. Upconversion-based photodynamic cancer therapy. Coord. Chem. Rev. 2019, 379, 82−98.  doi: 10.1016/j.ccr.2017.09.006

    7. [7]

      Li, X.; Zheng, B. Y.; Peng, X. H.; Li, S. Z.; Ying, J. W.; Zhao, Y.; Huang, J. D. Yoon, J. Phthalocyanines as medicinal photosensitizers: developments in the last five years. Coord. Chem. Rev. 2019, 379, 147−160.  doi: 10.1016/j.ccr.2017.08.003

    8. [8]

      Josefsen, L. B.; Boyle, R. W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012, 2, 916−966.  doi: 10.7150/thno.4571

    9. [9]

      Liu, Q.; Pang, M. P.; Tan, S. H.; Wang, J.; Chen, Q. L.; Wang, K.; Wu, W. J.; Hong, Z. Y. Potent peptide-conjugated silicon phthalocyanines for tumor photodynamic therapy. J. Cancer. 2018, 9, 310−320.  doi: 10.7150/jca.22362

    10. [10]

      Jia, Y. H.; Li, J. Y.; Chen, J. C.; Hu, P.; Jiang, L. G.; Chen, X. Y.; Huang, M. D.; Chen, Z.; Xu, P. Smart photosensitizer: tumor-triggered oncotherapy by self-assembly photodynamic nanodots. ACS Appl. Mater. Inter. 2018, 10, 15369−15380.  doi: 10.1021/acsami.7b19058

    11. [11]

      Xu, P.; Jia, Y.; Yang, Y.; Chen, J.; Hu, P.; Chen, Z.; Huang, M. Photodynamic oncotherapy mediated by gonadotropin-releasing hormone receptors. J. Med. Chem. 2017, 60, 8667−8672.  doi: 10.1021/acs.jmedchem.7b01216

    12. [12]

      Tang, F. X.; Li, H. C.; Ren, X. D.; Sun, Y.; Xie, W.; Wang, C. Y.; Zheng, B. Y.; Ke, M. R.; Huang, J. D. Preparation and antifungal properties of monosubstituted zinc(П) phthalocyanine-chitosan oligosaccharide conjugates and their quaternized derivatives. Dyes Pigments. 2018, 159, 439−448.  doi: 10.1016/j.dyepig.2018.07.004

    13. [13]

      Singh, S.; Aggarwal, A.; Bhupathiraju, N. V.; Arianna, G.; Tiwari, K.; Drain, C. M. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 2015, 115, 10261−10306.  doi: 10.1021/acs.chemrev.5b00244

    14. [14]

      Zheng, B. Y.; Shen, X. M.; Zhao, D. M.; Cai, Y. B.; Ke, M. R.; Huang, J. D. Silicon(IV) phthalocyanines substituted axially with different nucleoside moieties. Effects of nucleoside type on the photosensitizing efficiencies and in vitro photodynamic activities. J. Photochem. Photobiol. B 2016, 159, 196−204.  doi: 10.1016/j.jphotobiol.2016.03.055

    15. [15]

      Patel, P.; Patel, H. H.; Borland, E.; Gorun, S. M.; Sabatino, D. Chemically robust fluoroalkyl phthalocyanine-oligonucleotide bioconjugates and their GRP78 oncogene photocleavage activity. Chem. Commun. 2014, 50, 6309−6311.  doi: 10.1039/C4CC00703D

    16. [16]

      Wan, D. H.; Zheng, B. Y.; Ke, M. R.; Duan, J. Y.; Zheng, Y. Q.; Yeh, C. K.; Huang, J. D. C-Phycocyanin as a tumour-associated macrophage-targeted photosensitiser and a vehicle of phthalocyanine for enhanced photodynamic therapy. Chem. Commun. 2017, 53, 4112−4115.  doi: 10.1039/C6CC09541K

    17. [17]

      Chen, Z.; Xu, P.; Chen, J. C.; Chen, H. W.; Hu, P.; Chen, X. Y.; Lin, L.; Huang, Y. M.; Zheng, K.; Zhou, S. Y.; Li, R.; Chen, S.; Liu, J. P.; Huang, M. D. Zinc phthalocyanine conjugated with the amino-terminal fragment of urokinase for tumor-targeting photodynamic therapy. Acta. Biomater. 2014, 10, 4257−4268.  doi: 10.1016/j.actbio.2014.06.026

    18. [18]

      Wang, A.; Gui, L.; Lu, S.; Zhou, L.; Zhou, J. H.; Wei, S. H. Tumor microenvironment-responsive charge reversal zinc phthalocyanines based on amino acids for photodynamic therapy. Dyes Pigments. 2016, 126, 239−250.  doi: 10.1016/j.dyepig.2015.12.009

    19. [19]

      Serra, V. V.; Zamarron, A.; Faustino, M. A.; Cruz, M. C.; Blazquez, A.; Rodrigues, J. M. New porphyrin amino acid conjugates: synthesis and photodynamic effect in human epithelial cells. Bioorg. Med. Chem. 2010, 18, 6170−6178.  doi: 10.1016/j.bmc.2010.06.030

    20. [20]

      Sun, Q.; Zheng, B. Y.; Zhang, Y. H.; Zhuang, J. J.; Ke, M. R.; Huang, J. D. Highly photocytotoxic silicon(IV) phthalocyanines axially modified with l-tyrosine derivatives: effects of mode of axial substituent connection and of formulation on photodynamic activity. Dyes Pigments 2017, 141, 521−529.  doi: 10.1016/j.dyepig.2017.03.004

    21. [21]

      Gobbi, A.; Frenking, G. Y-Conjugated compounds: the equilibrium geometries and electronic structures of guanidine, guanidinium cation, urea, and 1, 1-diaminoethylene. J. Am. Chem. Soc. 1993, 115, 2362−2372.  doi: 10.1021/ja00059a035

    22. [22]

      Ji, Y.; Zhao, J.; Chu, C. Biodegradable nanocomplex from hyaluronic acid and arginine based poly(ester amide)s as the delivery vehicles for improved photodynamic therapy of multidrug resistant tumor cells: an in vitro study of the performance of chlorin e6 photosensitizer. J. Biomed. Mater. Res. A 2017, 105, 1487−1499.  doi: 10.1002/jbm.a.35982

    23. [23]

      Kanekura, K.; Harada, Y.; Fujimoto, M.; Yagi, T.; Hayamizu, Y.; Nagaoka, K.; Kuroda, M. Characterization of membrane penetration and cytotoxicity of C9orf72-encoding arginine-rich dipeptides. Sci. Rep. 2018, 8, 12740−11.  doi: 10.1038/s41598-018-31096-z

    24. [24]

      Wu, J.; Han, H.; Jin, Q.; Li, Z. H.; Li, H.; Ji, J. Design and proof of programmed 5-aminolevulinic acid prodrug nanocarriers for targeted photodynamic cancer therapy. ACS Appl. Mater. Inter. 2017, 9, 14596−14605.  doi: 10.1021/acsami.6b15853

    25. [25]

      Kawaguchi, Y.; Takeuchi, T.; Kuwata, K.; Chiba, J.; Hatanaka, Y.; Nakase, I. Syndecan-4 is a receptor for clathrin-mediated endocytosis of arginine-rich cell-penetrating peptides. Bioconjug. Chem. 2016, 27, 1119−1130.  doi: 10.1021/acs.bioconjchem.6b00082

    26. [26]

      Luedtke, N. W.; Carmichael, P.; Tor, Y. Cellular uptake of aminoglycosides, guanidinoglycosides, and poly-arginine. J. Am. Chem. Soc. 2003, 125, 12374−12375.  doi: 10.1021/ja0360135

    27. [27]

      Mitchell, D. J.; Kim, D. T.; Steinman, L.; Fathman, C. G.; Rothbard, J. B. Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Peptide Res. 2000, 56, 318−325.  doi: 10.1034/j.1399-3011.2000.00723.x

    28. [28]

      Rothbard, J. B.; Jessop, T. C.; Lewis, R. S.; Murray, B. A.; Wender, P. A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem. Soc. 2004, 126, 9506−9507.  doi: 10.1021/ja0482536

    29. [29]

      Zheng, Y. W.; Chen, S. F.; Zheng, B. Y.; Ke, M. R.; Huang, J. D. A silicon(IV) phthalocyanine-folate conjugate as an efficient photosensitizer. Chem. Lett. 2014, 43, 1701−1703.  doi: 10.1246/cl.140607

    30. [30]

      Han, J.; Sun, L.; Chu, Y.; Li, Z.; Huang, D.; Zhu, X.; Qian, H.; Huang, W. Design, synthesis, and biological activity of novel dicoumarol glucagon-like peptide 1 conjugates. J. Med. Chem. 2013, 56, 9955−9968.  doi: 10.1021/jm4017448

    31. [31]

      Scalise, I.; Durantini, E. N. Synthesis, properties, and photodynamic inactivation of escherichia coli using a cationic and a noncharged Zn(II) pyridyloxyphthalocyanine derivatives. Bioorg. Med. Chem. 2005, 13, 3037−3045.  doi: 10.1016/j.bmc.2005.01.063

    32. [32]

      Merkel, P. B.; Kearns, D. R. Comment regarding the rate constant for the reaction between 1, 3-diphenylisobenzofuran and singlet oxygen. J. Am. Chem. Soc. 1975, 97, 462−463.  doi: 10.1021/ja00835a063

    33. [33]

      Maree, M. D.; Kuznetsova, N.; Nyokong, T.; Chen, R. X.; Kitty, K. K. H.; Naresh, K.; Huang, J. D. Silicon octaphenoxyphthalocyanines: photostability and singlet oxygen quantum yields. J. Photoch. Photobio. A 2001, 140, 117−125.  doi: 10.1016/S1010-6030(01)00409-9

    34. [34]

      Zheng, B. Y.; Yang, X. Q.; Zhao, Y.; Zheng, Q. F.; Ke, M. R.; Lin, T. Synthesis and photodynamic activities of integrin-targeting silicon(IV) phthalocyanine-cRGD conjugates. Eur. J. Med. Chem. 2018, 155, 24−33.  doi: 10.1016/j.ejmech.2018.05.039

    35. [35]

      Li, F.; Zhao, Y.; Mao, C.; Kong, Y.; Ming, X. RGD-modified albumin nanoconjugates for targeted delivery of a porphyrin photosensitizer. Mol. Pharm. 2017, 14, 2793−2804.  doi: 10.1021/acs.molpharmaceut.7b00321

    36. [36]

      Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L. T.; Choyke, P. L.; Kobayashi, H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011, 17, 1685−1691.  doi: 10.1038/nm.2554

    37. [37]

      Bulina, M. E.; Chudakov, D. M.; Britanova, O. V.; Yanushevich, Y. G.; Staroverov, D. B.; Chepurnykh, T. V. A genetically encoded photosensitizer. Nat. Biotechnol. 2006, 24, 95−99.  doi: 10.1038/nbt1175

    38. [38]

      Cheng, H.; Zheng, R. R.; Fan, G. L.; Fan, J. H.; Zhao, L. P.; Jiang, X. Y.; Yang, B.; Yu, X. Y.; Li, S. Y.; Zhang, X. Z. Mitochondria and plasma membrane dual-targeted chimeric peptide for single-agent synergistic photodynamic therapy. Biomaterials 2019, 188, 1−11.  doi: 10.1016/j.biomaterials.2018.10.005

    39. [39]

      Li, S. Y.; Qiu, W. X.; Cheng, H.; Gao, F.; Cao, F. Y.; Zhang, X. Z. A versatile plasma membrane engineered cell vehicle for contact-cell-enhanced photodynamic therapy. Adv. Funct. Mater. 2017, 27, 1604916−11.  doi: 10.1002/adfm.201604916

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    3. [3]

      Tingting HuChao ShenXueyan WangFengbo WuZhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562

    4. [4]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    5. [5]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    6. [6]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    7. [7]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    8. [8]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    9. [9]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    10. [10]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    11. [11]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    12. [12]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    13. [13]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    14. [14]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    15. [15]

      Wenbin ZhouYafei GaoXinyu FengYanqing ZhangCong YangLanxi HeFenghe ZhangXiaoguang LiQing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763

    16. [16]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    17. [17]

      Liangliang JiaYe HongXinyu HeYing ZhouLiujiao RenHongjun DuBin ZhaoBin QinZhe YangDi Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957

    18. [18]

      Hao SunShengke LiQian LiuMinzan ZuoXueqi TianKaiya WangXiao-Yu Hu . Supramolecular prodrug vesicles for selective antimicrobial therapy employing a chemo-photodynamic strategy. Chinese Chemical Letters, 2025, 36(3): 109999-. doi: 10.1016/j.cclet.2024.109999

    19. [19]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    20. [20]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

Metrics
  • PDF Downloads(1)
  • Abstract views(372)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return