DFT Investigation on the Enantioselectivity of Olefin Carboacylation Catalyzed by a Rh(Ⅰ) Complex
- Corresponding author: Xue-Li CHENG, x_cheng@tsu.edu.cn Qi-Ying XIA, xiaqiying@163.com
Citation:
Xue-Li CHENG, Li-Qing LI, Yin-Feng HAN, Qing-Long TAN, Qi-Ying XIA. DFT Investigation on the Enantioselectivity of Olefin Carboacylation Catalyzed by a Rh(Ⅰ) Complex[J]. Chinese Journal of Structural Chemistry,
;2020, 39(4): 630-642.
doi:
10.14102/j.cnki.0254-5861.2011-2468
Jun, C. H. Transition metal-catalyzed carbon-carbon bond activation. Chem. Soc. Rev. 2004, 33, 610−618.
doi: 10.1039/B308864M
Chen, F.; Wang, T.; Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon-carbon bonds. Chem. Rev. 2014, 114, 8613−8661.
doi: 10.1021/cr400628s
Zhu, B.; Guan, W.; Yan, L. K.; Su, Z. M. Two-state reactivity mechanism of benzene C−C activation by trinuclear titanium hydride. J. Am. Chem. Soc. 2016, 138, 11069−11072.
doi: 10.1021/jacs.6b02433
Hartwig, J. F. Evolution of C−H bond functionalization from methane to methodology. J. Am. Chem. Soc. 2016, 138, 2−24.
doi: 10.1021/jacs.5b08707
Kim, D. S.; Park, W. J.; Jun, C. H. Metal-organic cooperative catalysis in C–H and C–C bond activation. Chem. Rev. 2017, 117, 8977–9015.
doi: 10.1021/acs.chemrev.6b00554
Wentzel, M. T.; Reddy, V. J.; Hyster, T. K.; Douglas, C. J. Chemoselectivity in catalytic C–C and C–H bond activation: controlling intermolecular carboacylation and hydroarylation of alkenes. Angew. Chem. Int. Ed. 2009, 48, 6121−6123.
doi: 10.1002/anie.200902215
Obenhuber, A.; Ruhland, K. Activation of an unstrained C(sp2)–C(sp2) single bond using chelate-bisphosphinite rhodium(Ⅰ) complexes. Organometallics 2011, 30, 4039−4051.
doi: 10.1021/om200288e
Namyslo, J. C.; Kaufmann, D. E. The application of cyclobutane derivatives in organic synthesis. Chem. Rev. 2003, 103, 1485−1537.
doi: 10.1021/cr010010y
Rubin, M.; Rubina, M.; Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev. 2007, 107, 3117−3179.
doi: 10.1021/cr050988l
Shi, M.; Shao, L. X.; Lu, J. M.; Wei, Y.; Mizuno, K.; Maeda, H. Chemistry of vinylidenecyclopropanes. Chem. Rev. 2010, 110, 5883–5913.
doi: 10.1021/cr900381k
Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Cyclobutanes in catalysis. Angew. Chem. Int. Ed. 2011, 50, 7740–7752.
doi: 10.1002/anie.201101053
Mack, D. J.; Njardarson, J. T. Recent advances in the metal-catalyzed ring expansions of three- and four-membered rings. ACS Catal. 2013, 3, 272−286.
doi: 10.1021/cs300771d
Suggs, J. W.; Jun, C. H. Synthesis of a chiral rhodium alkyl via metal insertion into an unstrained C–C bond and use of the rate of racemization at carbon to obtain a rhodium-carbon bond dissociation energy. J. Am. Chem. Soc. 1986, 108, 4679–4681.
doi: 10.1021/ja00275a086
Müller, C.; Iverson, C. N.; Lachicotte, R. J.; Jones, W. D. Carbon-carbon bond activation in Pt(0)-diphenylacetylene complexes bearing chelating P,N- and P,P-ligands. J. Am. Chem. Soc. 2001, 123, 9718–9719.
doi: 10.1021/ja016675z
Ruhland, K.; Obenhuber, A.; Hoffmann, S. D. Cleavage of unstrained C(sp2)–C(sp2) single bonds with Ni0 complexes using chelating assistance. Organometallics 2008, 27, 3482–3495.
doi: 10.1021/om800054m
Sun, M.; Shen, G.; Bao, W. Regioselective cleavage of unstrained C–C bond and C–H bond: palladium-copper catalyzed deacetophenonylative arylation of coumarin derivatives. Adv. Synth. Catal. 2012, 354, 3468–3474.
doi: 10.1002/adsc.201200539
Zhou, W.; Fan, W.; Jiang, Q.; Liang, Y. F.; Jiao, N. Copper-catalyzed aerobic oxidative C–C bond cleavage of unstrained ketones with air and amines. Org. Lett. 2015, 17, 2542–2545.
doi: 10.1021/acs.orglett.5b01114
Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. Highly enantioselective Rh-catalyzed carboacylation of olefins: efficient syntheses of chiral poly-fused rings. J. Am. Chem. Soc. 2012, 134, 20005–20008.
doi: 10.1021/ja309978c
Xu, T.; Dong, G. Rhodium-catalyzed regioselective carboacylation of olefins: a C–C bond activation approach for accessing fused-ring systems. Angew. Chem. Int. Ed. 2012, 51, 7567–7571.
doi: 10.1002/anie.201202771
Lyon, J. T.; Andrews, L. An infrared spectroscopic and theoretical study of group 4 transition metal CH2=MCl2 and HC÷MCl3 complexes. Organometallics 2007, 26, 332–339.
doi: 10.1021/om0608399
Cheng, X. Density functional theory investigation on the reaction mechanisms of Ti (3F) with CH2Cl2 and CHCl3 to CH2=TiCl2 and HC÷TiCl3. Chin. J. Struct. Chem. 2016, 35, 193–198.
Sberegaeva, A. V.; Zavalij, P. Y.; Vedernikov, A. N. Oxidation of a monomethylpalladium(Ⅱ) complex with O2 in water: tuning reaction selectivity to form ethane, methanol, or methylhydroperoxide. J. Am. Chem. Soc. 2016, 138, 1446−1455.
doi: 10.1021/jacs.5b12832
Dowd, P.; Zhang, W. Free radical-mediated ring expansion and related annulations. Chem. Rev. 1993, 93, 2091–2115.
doi: 10.1021/cr00022a007
Zsoldos-Mády, V.; Ozohanics, O.; Csámpai, A.; Kudar, V.; Frigyes, D.; Sohár, P. Ferrocenyl pyrazolines: preparation, structure, redox properties and DFT study on regioselective ring-closure. J. Organomet. Chem. 2009, 694, 4185–4195.
doi: 10.1016/j.jorganchem.2009.09.007
Yasui, E.; Ootsuki, R.; Takayama, K.; Nagumo, S. Unique ring expansion of a 6-3 bicyclic ring system forming a functionalized 7-membered ring accelerated by nitrogen functional groups. Tetra. Lett. 2017, 58, 3092–3095.
doi: 10.1016/j.tetlet.2017.06.061
Chen, X.; Xu, J. Synthesis of 3-acyl-5,6-dihydro-1,4-oxathiines through ring expansion of thiiranes. Tetra. Lett. 2017, 58, 1651–1654.
doi: 10.1016/j.tetlet.2017.03.039
Chen, Q.; Zhou, J.; Han, Q.; Wang, Y.; Fu, Y. Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange. Colloid. Surface B 2012, 92, 130–135.
doi: 10.1016/j.colsurfb.2011.11.031
Liu, M.; Zhang, L.; Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.
doi: 10.1021/cr500671p
Sanganyado, E.; Lu, Z.; Fu, Q.; Schlenk, D.; Gan, J. Chiral pharmaceuticals: a review on their environmental occurrence and fate processes. Water Res. 2017, 124, 527–542.
doi: 10.1016/j.watres.2017.08.003
Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P. Computational study of Rh-catalyzed carboacylation of olefins: ligand-promoted rhodacycle isomerization enables regioselective C–C bond functionalization of benzocyclobutenones. J. Am. Chem. Soc. 2015, 137, 8274−8283.
doi: 10.1021/jacs.5b04691
Cheng, X.; Li, F.; Zhao, Y.; Wang, Z.; Wang, C. A. Activation and recyclization of a benzocyclobutenone derivative catalyzed by a chiral Rh(Ⅰ) complex based on DFT investigations. Chem. Pap. 2019, 73, 995–1001.
doi: 10.1007/s11696-018-0641-1
Cheng, X.; Li, Y.; Zhao, Y.; Liu, Y. Reaction mechanism of Rh(Ⅰ)-catalyzed olefin carboacylation: chiral enantioselectivity in the formation of poly-fused rings. Chem. J. Chin. U. 2018, 39, 521–529.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C. 01, Gaussian, Inc., Wallingford CT 2010.
Prince, B. M.; Cundari, T. R. Computational study of methane C−H activation by earth-abundant metal amide/aminyl complexes. Organometallics 2017, 36, 3987−3994.
doi: 10.1021/acs.organomet.7b00600
Krompiec, S.; Bujak, P.; Malarz, J.; Krompiec, M.; Skórka, Ł.; Pluta, T.; Danikiewicz, W.; Kania, M.; Kusz, J. An isomerization-1,3-dipolar cycloaddition tandem reaction towards the synthesis of 3-aryl-4-methyl-5-O-substituted isoxazolines from O-allyl compounds. Tetrahedron 2012, 68, 6018−6031.
doi: 10.1016/j.tet.2012.05.027
Cheng, X.; Zhao, Y.; Liu, Y.; Li, F. Role of F- in the hydrolysis-condensation mechanisms of silicon alkoxide Si(OCH3)4: a DFT investigation. New J. Chem. 2013, 37, 1371–1377.
doi: 10.1039/c3nj41140k
Cheng, X. Cyclization mechanisms of the cyclic dimer of aziridine aldehyde with vinyl aldehyde. Comput. Theor. Chem. 2017, 1113, 105–109.
doi: 10.1016/j.comptc.2017.05.013
Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298.
doi: 10.1063/1.448800
Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.
doi: 10.1063/1.448975
Petrović, Z. D.; Petrović, V. P.; Simijonović, D.; Marković, S. Insight into hydrolytic reaction of N-acetylated L-histidylglycine dipeptide with novel mechlorethamine platinum(Ⅱ) complex. NMR and DFT study of the hydrolytic reaction. Dalton Trans. 2011, 40, 9284–9288.
doi: 10.1039/c1dt10593k
Andrada, D. M.; Granados, A. M.; Solà, M.; Fernández, I. DFT study of thermal 1,3-dipolar cycloaddition reactions between alkynyl metal(0) Fischer carbene complexes and 3H-1,2-dithiole-3-thione derivatives. Organometallics 2011, 30, 466–476.
doi: 10.1021/om1007105
Liu, R.; Zhang, J.; Han, L.; Liu, T. Mechanistic insight into the ruthenium-catalyzed cycloaddition of diynes with 2,3-diphenyl-2H-azirines: a theoretical study. Comput. Theor. Chem. 2018, 1127, 16–21.
doi: 10.1016/j.comptc.2018.02.002
Wang, H.; Xie, Y.; King, R. B.; Schaefer Ⅲ, H. F. Binuclear cyclopentadienylcobalt carbonyls: comparison with binuclear iron carbonyls. J. Am. Chem. Soc. 2005, 127, 11646−11651.
doi: 10.1021/ja051554a
Darmon, J. M.; Stieber, S. C. E.; Sylvester, K. T.; Fernández, I.; Lobkovsky, E.; Semproni, S. P.; Bill, E.; Wieghardt, K.; DeBeer, S.; Chirik, P. J. Oxidative addition of carbon-carbon bonds with a redox-active bis(imino)pyridine iron complex. J. Am. Chem. Soc. 2012, 134, 17125−17137.
doi: 10.1021/ja306526d
Ke, Z.; Abe, S.; Ueno, T.; Morokuma, K. Rh-catalyzed polymerization of phenylacetylene: theoretical studies of the reaction mechanism, regioselectivity, and stereoregularity. J. Am. Chem. Soc. 2011, 133, 7926−7941.
doi: 10.1021/ja2012565
Suarez-Bertoa, R.; Saliu, F.; Bruschi, M.; Rindone, B. Reaction products and mechanism of the regioselective oxidation of N-phenylmorpholine by ozone. Tetrahedron 2012, 68, 8267–8275.
doi: 10.1016/j.tet.2012.07.055
Raczyńska, E. D.; Michalec, P.; Zalewski, M.; Sapuła, M. Effects of ionization on stability of 1-methylcytosine — DFT and PCM studies. J. Mol. Model. 2016, 22, 146–14.
doi: 10.1007/s00894-016-3020-2
Santos, C. I. A. V.; Ramos, M. L.; Justino, L. L. G.; Burrows, H. D.; Valente, A. J. M.; Esteso, M. A.; Leaist, D. G.; Ribeiro, A. C. F. Effect of pH in the structure and mass transport by diffusion of theophylline. J. Chem. Thermodyn. 2017, 110, 162−170.
doi: 10.1016/j.jct.2017.02.019
Gadžurić, S.; Tot, A.; Armaković, S.; Armaković, S.; Panić, J.; Jović, B.; Vraneš, M. Uncommon structure making/breaking behaviour of cholinium taurate in water. J. Chem. Thermodyn. 2017, 107, 58–64.
doi: 10.1016/j.jct.2016.12.025
Shi, Q.; Wang, Y.; Wei, D. Theoretical study on DABCO-catalyzed ring expansion of cyclopropyl ketone: mechanism, chemoselectivity, and role of catalyst. Comput. Theor. Chem. 2018, 1123, 20−25.
doi: 10.1016/j.comptc.2017.11.013
Cheng, X. Structures, bonding and thermodynamics of extracting U(Ⅵ) from aqueous nitric acid solutions with N-methyl-N-decyl-octanamide and its amide derivatives: an M06-2X investigation. J. Chem. Thermodyn. 2019, 132, 470−475.
doi: 10.1016/j.jct.2017.11.001
Zhao, Y.; Truhlar, D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215−241.
doi: 10.1007/s00214-007-0310-x
Schenker, S.; Schneider, C.; Tsogoeva, S. B.; Clark, T. Assessment of popular DFT and semiempirical molecular orbital techniques for calculating relative transition state energies and kinetic product distributions in enantioselective organocatalytic reactions. J. Chem. Theory Comput. 2011, 7, 3586−3595.
doi: 10.1021/ct2002013
Tot, A.; Armaković, S.; Armaković, S.; Gadžurić, S.; Vraneš, M. Kosmotropism of newly synthesized 1-butyl-3-methylimidazolium taurate ionic liquid: experimental and computational study. J. Chem. Thermodyn. 2016, 94, 85–95.
doi: 10.1016/j.jct.2015.10.026
Salehi, Y.; Hamzehloueian, M. The strain-promoted alkyne-nitrone and alkyne-nitrile oxide cycloaddition reactions: a theoretical study. Tetrahedron 2017, 73, 4634–4643.
doi: 10.1016/j.tet.2017.06.038
Gonzalez, C.; Schlegel, H. B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154–2161.
doi: 10.1063/1.456010
Gonzalez, C.; Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527.
doi: 10.1021/j100377a021
Zheng, W.; Ariafard, A.; Lin, Z. Understanding the highly regioselective cyanothiolation of 1-alkynes catalyzed by palladium phosphine complexes. Organometallics 2008, 27, 246–253.
doi: 10.1021/om7009446
Naka, A.; Takase, S.; Shimada, A.; Kobayashi, H.; Ishikawa, M. Platinum-catalyzed reactions of 2,3-bis(dimethylsilyl)furan with alkynes. J. Organomet. Chem. 2017, 853, 13–17.
doi: 10.1016/j.jorganchem.2017.10.016
Zhang, X.; Liu, Y.; Chen, G.; Pei, G.; Bi, S. Theoretical insight into C(sp3)−F bond activations and origins of chemo- and regioselectivities of ″tunable″ nickel-mediated/-catalyzed couplings of 2-trifluoromethyl-1-alkenes with alkynes. Organometallics 2017, 36, 3739–3749.
doi: 10.1021/acs.organomet.7b00514
Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553−566.
doi: 10.1080/00268977000101561
Simon, S.; Duran, M.; Dannenberg, J. J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 1996, 105, 11024−11031.
doi: 10.1063/1.472902
Zhu, R.; Zhang, D.; Wu, J.; Liu, C. Theoretical study of the bifunctional-urea catalyzed Michael reaction of 1,3-dicarbonyl compounds and nitroolefins: reaction mechanism and enantioselectivity. Tetrahedron: Asymmetr. 2006, 17, 1611–1616.
doi: 10.1016/j.tetasy.2006.05.033
Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735−746.
doi: 10.1063/1.449486
Uggla, R.; Sundberg, M. R.; Nevalainen, V. Boronic acids as molecular sensors NBO analysis and 13C chemical shifts as tools for evaluation of DFT geometry optimization of complexes of diphenylmethane 3, 3'-diboronic acids and glucose. Tetrahedron: Asymmetr. 1996, 7, 1741−1748.
doi: 10.1016/0957-4166(96)00208-X
Uggla, R.; Nevalainen, V.; Sundberg, M. R. On the role of π-stacking in aldehyde complexes of N-sulphonylated oxazaborolidinones used as chiral catalysts. Tetrahedron: Asymmetr. 1996, 7, 2725−2732.
doi: 10.1016/0957-4166(96)00351-5
Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506.
doi: 10.1021/ja100936w
Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580−592.
doi: 10.1002/jcc.22885
Keerthi, A.; Geim, A. K.; Janardanan, A.; Rooney, A. P.; Esfandiar, A.; Hu, S.; Dar, S. A.; Grigorieva, I. V.; Haigh, S. J.; Wang, F. C.; Radha, B. Ballistic molecular transport through two-dimensional channels. Nature 2018, 558, 420–424.
doi: 10.1038/s41586-018-0203-2
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 1996, 14, 33−38.
doi: 10.1016/0263-7855(96)00018-5
Amesty, Á.; Burgueño-Tapia, E.; Joseph-Nathan, P.; Ravelo, Á. G.; Estévez-Braun, A. Benzodihydrofurans from cyperus teneriffae. J. Nat. Prod. 2011, 74, 1061−1065.
doi: 10.1021/np200020t
Cheng, X. L.; Li, G. X.; Wang, Z. M.; Zhao, Y. Y.; Sun, Y. F. Theoretical investigation of CH3CF2O2 + HOO reaction. Chin. J. Chem. Phys. 2007, 20, 243−248.
doi: 10.1088/1674-0068/20/03/243-248
Cheng, X. L.; Zhao, Y. Y.; Li, F.; Li, L. Q.; Tao, X. J. Reaction mechanism of the multi-channel decomposition reactions of 1-pentenyl free radicals. Chin. J. Chem. 2008, 26, 44−50.
doi: 10.1002/cjoc.200890036
Junying LI , Xinyan CHEN , Xihui DIAO , Muhammad Yaseen , Chao CHEN , Hao WANG , Chuansong QI , Wei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084
Cong Gao , Zijian Zhu , Siwei Li , Zheng Xi , Qingqing Sun , Jie Han , Rong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968
Chuyu Huang , Zhishan Liu , Linping Zhao , Zuxiao Chen , Rongrong Zheng , Xiaona Rao , Yuxuan Wei , Xin Chen , Shiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
Zhanhui Yang , Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Yunyan Li , Zimin Cai , Zhicheng Wang , Sifeng Zhu , Wendian Liu , Cheng Wang . Construction of biomimetic hybrid nanovesicles based on M1 macrophage-derived exosomes for therapy of cancer. Chinese Chemical Letters, 2025, 36(4): 109942-. doi: 10.1016/j.cclet.2024.109942
Keke Han , Wenjun Rao , Xiuli You , Haina Zhang , Xing Ye , Zhenhong Wei , Hu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4−, ReO4−). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Jingqi Ma , Huangjie Lu , Junpu Yang , Liangwei Yang , Jian-Qiang Wang , Xianlong Du , Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275
Xin Dong , Jing Liang , Zhijin Xu , Huajie Wu , Lei Wang , Shihai You , Junhua Luo , Lina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708
Xiuwen Xu , Quan Zhou , Yacong Wang , Yunjie He , Qiang Wang , Yuan Wang , Bing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
The Arabic numerals besides atoms are sequence numbers for the selected atoms