Citation: Xue-Li CHENG, Li-Qing LI, Yin-Feng HAN, Qing-Long TAN, Qi-Ying XIA. DFT Investigation on the Enantioselectivity of Olefin Carboacylation Catalyzed by a Rh(Ⅰ) Complex[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 630-642. doi: 10.14102/j.cnki.0254-5861.2011-2468 shu

DFT Investigation on the Enantioselectivity of Olefin Carboacylation Catalyzed by a Rh(Ⅰ) Complex

  • Corresponding author: Xue-Li CHENG, x_cheng@tsu.edu.cn Qi-Ying XIA, xiaqiying@163.com
  • Received Date: 23 May 2019
    Accepted Date: 25 February 2020

    Fund Project: the National Natural Science Foundation of China 21571137the Natural Science Foundation of Shandong Province ZR2017LB010the Science and Technology Planning Project (Guidance Plan) of Tai'an City 2018GX0041the Science and Technology Planning Project (Guidance Plan) of Tai'an City 2018GX0073

Figures(10)

  • The C–C bond activation and recyclization of benzocyclobutenone to poly-fused rings catalyzed by the [Rh(R,S-L)]+ complex producing the R,S-, S,R-, R,R- and S,S-product were investigated systematically at the BP86/6-31G(d,p) level in gas phase and THF, and the R,S- and S,R-reaction pathways were revisited at the M062X/6-31G(d,p) level in THF. The computational results reveal that THF only marginally alters the free-energy barriers, but elevates the relative energies of all species. The BP86 functional testifies that in both gas phase and THF, the activation of strained C–C bonds bears relatively low free-energy barriers, and the rate-determining steps of S,R- and R,R-channels are different from those of R,S- and S,S-channels. The BP86 functional also predicts that the R,S-channel is energetically most favorable in gas phase, but the S,R-product is dominant in THF. The change of NPA charges can mirror the variation of molecular structures to elucidate reaction mechanisms.
  • 加载中
    1. [1]

      Jun, C. H. Transition metal-catalyzed carbon-carbon bond activation. Chem. Soc. Rev. 2004, 33, 610−618.  doi: 10.1039/B308864M

    2. [2]

      Chen, F.; Wang, T.; Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon-carbon bonds. Chem. Rev. 2014, 114, 8613−8661.  doi: 10.1021/cr400628s

    3. [3]

      Zhu, B.; Guan, W.; Yan, L. K.; Su, Z. M. Two-state reactivity mechanism of benzene C−C activation by trinuclear titanium hydride. J. Am. Chem. Soc. 2016, 138, 11069−11072.  doi: 10.1021/jacs.6b02433

    4. [4]

      Hartwig, J. F. Evolution of C−H bond functionalization from methane to methodology. J. Am. Chem. Soc. 2016, 138, 2−24.  doi: 10.1021/jacs.5b08707

    5. [5]

      Kim, D. S.; Park, W. J.; Jun, C. H. Metal-organic cooperative catalysis in C–H and C–C bond activation. Chem. Rev. 2017, 117, 8977–9015.  doi: 10.1021/acs.chemrev.6b00554

    6. [6]

      Wentzel, M. T.; Reddy, V. J.; Hyster, T. K.; Douglas, C. J. Chemoselectivity in catalytic C–C and C–H bond activation: controlling intermolecular carboacylation and hydroarylation of alkenes. Angew. Chem. Int. Ed. 2009, 48, 6121−6123.  doi: 10.1002/anie.200902215

    7. [7]

      Obenhuber, A.; Ruhland, K. Activation of an unstrained C(sp2)–C(sp2) single bond using chelate-bisphosphinite rhodium(Ⅰ) complexes. Organometallics 2011, 30, 4039−4051.  doi: 10.1021/om200288e

    8. [8]

      Namyslo, J. C.; Kaufmann, D. E. The application of cyclobutane derivatives in organic synthesis. Chem. Rev. 2003, 103, 1485−1537.  doi: 10.1021/cr010010y

    9. [9]

      Rubin, M.; Rubina, M.; Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev. 2007, 107, 3117−3179.  doi: 10.1021/cr050988l

    10. [10]

      Shi, M.; Shao, L. X.; Lu, J. M.; Wei, Y.; Mizuno, K.; Maeda, H. Chemistry of vinylidenecyclopropanes. Chem. Rev. 2010, 110, 5883–5913.  doi: 10.1021/cr900381k

    11. [11]

      Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Cyclobutanes in catalysis. Angew. Chem. Int. Ed. 2011, 50, 7740–7752.  doi: 10.1002/anie.201101053

    12. [12]

      Mack, D. J.; Njardarson, J. T. Recent advances in the metal-catalyzed ring expansions of three- and four-membered rings. ACS Catal. 2013, 3, 272−286.  doi: 10.1021/cs300771d

    13. [13]

      Suggs, J. W.; Jun, C. H. Synthesis of a chiral rhodium alkyl via metal insertion into an unstrained C–C bond and use of the rate of racemization at carbon to obtain a rhodium-carbon bond dissociation energy. J. Am. Chem. Soc. 1986, 108, 4679–4681.  doi: 10.1021/ja00275a086

    14. [14]

      Müller, C.; Iverson, C. N.; Lachicotte, R. J.; Jones, W. D. Carbon-carbon bond activation in Pt(0)-diphenylacetylene complexes bearing chelating P,N- and P,P-ligands. J. Am. Chem. Soc. 2001, 123, 9718–9719.  doi: 10.1021/ja016675z

    15. [15]

      Ruhland, K.; Obenhuber, A.; Hoffmann, S. D. Cleavage of unstrained C(sp2)–C(sp2) single bonds with Ni0 complexes using chelating assistance. Organometallics 2008, 27, 3482–3495.  doi: 10.1021/om800054m

    16. [16]

      Sun, M.; Shen, G.; Bao, W. Regioselective cleavage of unstrained C–C bond and C–H bond: palladium-copper catalyzed deacetophenonylative arylation of coumarin derivatives. Adv. Synth. Catal. 2012, 354, 3468–3474.  doi: 10.1002/adsc.201200539

    17. [17]

      Zhou, W.; Fan, W.; Jiang, Q.; Liang, Y. F.; Jiao, N. Copper-catalyzed aerobic oxidative C–C bond cleavage of unstrained ketones with air and amines. Org. Lett. 2015, 17, 2542–2545.  doi: 10.1021/acs.orglett.5b01114

    18. [18]

      Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. Highly enantioselective Rh-catalyzed carboacylation of olefins: efficient syntheses of chiral poly-fused rings. J. Am. Chem. Soc. 2012, 134, 20005–20008.  doi: 10.1021/ja309978c

    19. [19]

      Xu, T.; Dong, G. Rhodium-catalyzed regioselective carboacylation of olefins: a C–C bond activation approach for accessing fused-ring systems. Angew. Chem. Int. Ed. 2012, 51, 7567–7571.  doi: 10.1002/anie.201202771

    20. [20]

      Lyon, J. T.; Andrews, L. An infrared spectroscopic and theoretical study of group 4 transition metal CH2=MCl2 and HC÷MCl3 complexes. Organometallics 2007, 26, 332–339.  doi: 10.1021/om0608399

    21. [21]

      Cheng, X. Density functional theory investigation on the reaction mechanisms of Ti (3F) with CH2Cl2 and CHCl3 to CH2=TiCl2 and HC÷TiCl3. Chin. J. Struct. Chem. 2016, 35, 193–198.

    22. [22]

      Sberegaeva, A. V.; Zavalij, P. Y.; Vedernikov, A. N. Oxidation of a monomethylpalladium(Ⅱ) complex with O2 in water: tuning reaction selectivity to form ethane, methanol, or methylhydroperoxide. J. Am. Chem. Soc. 2016, 138, 1446−1455.  doi: 10.1021/jacs.5b12832

    23. [23]

      Dowd, P.; Zhang, W. Free radical-mediated ring expansion and related annulations. Chem. Rev. 1993, 93, 2091–2115.  doi: 10.1021/cr00022a007

    24. [24]

      Zsoldos-Mády, V.; Ozohanics, O.; Csámpai, A.; Kudar, V.; Frigyes, D.; Sohár, P. Ferrocenyl pyrazolines: preparation, structure, redox properties and DFT study on regioselective ring-closure. J. Organomet. Chem. 2009, 694, 4185–4195.  doi: 10.1016/j.jorganchem.2009.09.007

    25. [25]

      Yasui, E.; Ootsuki, R.; Takayama, K.; Nagumo, S. Unique ring expansion of a 6-3 bicyclic ring system forming a functionalized 7-membered ring accelerated by nitrogen functional groups. Tetra. Lett. 2017, 58, 3092–3095.  doi: 10.1016/j.tetlet.2017.06.061

    26. [26]

      Chen, X.; Xu, J. Synthesis of 3-acyl-5,6-dihydro-1,4-oxathiines through ring expansion of thiiranes. Tetra. Lett. 2017, 58, 1651–1654.  doi: 10.1016/j.tetlet.2017.03.039

    27. [27]

      Chen, Q.; Zhou, J.; Han, Q.; Wang, Y.; Fu, Y. Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange. Colloid. Surface B 2012, 92, 130–135.  doi: 10.1016/j.colsurfb.2011.11.031

    28. [28]

      Liu, M.; Zhang, L.; Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.  doi: 10.1021/cr500671p

    29. [29]

      Sanganyado, E.; Lu, Z.; Fu, Q.; Schlenk, D.; Gan, J. Chiral pharmaceuticals: a review on their environmental occurrence and fate processes. Water Res. 2017, 124, 527–542.  doi: 10.1016/j.watres.2017.08.003

    30. [30]

      Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P. Computational study of Rh-catalyzed carboacylation of olefins: ligand-promoted rhodacycle isomerization enables regioselective C–C bond functionalization of benzocyclobutenones. J. Am. Chem. Soc. 2015, 137, 8274−8283.  doi: 10.1021/jacs.5b04691

    31. [31]

      Cheng, X.; Li, F.; Zhao, Y.; Wang, Z.; Wang, C. A. Activation and recyclization of a benzocyclobutenone derivative catalyzed by a chiral Rh(Ⅰ) complex based on DFT investigations. Chem. Pap. 2019, 73, 995–1001.  doi: 10.1007/s11696-018-0641-1

    32. [32]

      Cheng, X.; Li, Y.; Zhao, Y.; Liu, Y. Reaction mechanism of Rh(Ⅰ)-catalyzed olefin carboacylation: chiral enantioselectivity in the formation of poly-fused rings. Chem. J. Chin. U. 2018, 39, 521–529.

    33. [33]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C. 01, Gaussian, Inc., Wallingford CT 2010.

    34. [34]

      Prince, B. M.; Cundari, T. R. Computational study of methane C−H activation by earth-abundant metal amide/aminyl complexes. Organometallics 2017, 36, 3987−3994.  doi: 10.1021/acs.organomet.7b00600

    35. [35]

      Krompiec, S.; Bujak, P.; Malarz, J.; Krompiec, M.; Skórka, Ł.; Pluta, T.; Danikiewicz, W.; Kania, M.; Kusz, J. An isomerization-1,3-dipolar cycloaddition tandem reaction towards the synthesis of 3-aryl-4-methyl-5-O-substituted isoxazolines from O-allyl compounds. Tetrahedron 2012, 68, 6018−6031.  doi: 10.1016/j.tet.2012.05.027

    36. [36]

      Cheng, X.; Zhao, Y.; Liu, Y.; Li, F. Role of F- in the hydrolysis-condensation mechanisms of silicon alkoxide Si(OCH3)4: a DFT investigation. New J. Chem. 2013, 37, 1371–1377.  doi: 10.1039/c3nj41140k

    37. [37]

      Cheng, X. Cyclization mechanisms of the cyclic dimer of aziridine aldehyde with vinyl aldehyde. Comput. Theor. Chem. 2017, 1113, 105–109.  doi: 10.1016/j.comptc.2017.05.013

    38. [38]

      Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298.  doi: 10.1063/1.448800

    39. [39]

      Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.  doi: 10.1063/1.448975

    40. [40]

      Petrović, Z. D.; Petrović, V. P.; Simijonović, D.; Marković, S. Insight into hydrolytic reaction of N-acetylated L-histidylglycine dipeptide with novel mechlorethamine platinum(Ⅱ) complex. NMR and DFT study of the hydrolytic reaction. Dalton Trans. 2011, 40, 9284–9288.  doi: 10.1039/c1dt10593k

    41. [41]

      Andrada, D. M.; Granados, A. M.; Solà, M.; Fernández, I. DFT study of thermal 1,3-dipolar cycloaddition reactions between alkynyl metal(0) Fischer carbene complexes and 3H-1,2-dithiole-3-thione derivatives. Organometallics 2011, 30, 466–476.  doi: 10.1021/om1007105

    42. [42]

      Liu, R.; Zhang, J.; Han, L.; Liu, T. Mechanistic insight into the ruthenium-catalyzed cycloaddition of diynes with 2,3-diphenyl-2H-azirines: a theoretical study. Comput. Theor. Chem. 2018, 1127, 16–21.  doi: 10.1016/j.comptc.2018.02.002

    43. [43]

      Wang, H.; Xie, Y.; King, R. B.; Schaefer Ⅲ, H. F. Binuclear cyclopentadienylcobalt carbonyls: comparison with binuclear iron carbonyls. J. Am. Chem. Soc. 2005, 127, 11646−11651.  doi: 10.1021/ja051554a

    44. [44]

      Darmon, J. M.; Stieber, S. C. E.; Sylvester, K. T.; Fernández, I.; Lobkovsky, E.; Semproni, S. P.; Bill, E.; Wieghardt, K.; DeBeer, S.; Chirik, P. J. Oxidative addition of carbon-carbon bonds with a redox-active bis(imino)pyridine iron complex. J. Am. Chem. Soc. 2012, 134, 17125−17137.  doi: 10.1021/ja306526d

    45. [45]

      Ke, Z.; Abe, S.; Ueno, T.; Morokuma, K. Rh-catalyzed polymerization of phenylacetylene: theoretical studies of the reaction mechanism, regioselectivity, and stereoregularity. J. Am. Chem. Soc. 2011, 133, 7926−7941.  doi: 10.1021/ja2012565

    46. [46]

      Suarez-Bertoa, R.; Saliu, F.; Bruschi, M.; Rindone, B. Reaction products and mechanism of the regioselective oxidation of N-phenylmorpholine by ozone. Tetrahedron 2012, 68, 8267–8275.  doi: 10.1016/j.tet.2012.07.055

    47. [47]

      Raczyńska, E. D.; Michalec, P.; Zalewski, M.; Sapuła, M. Effects of ionization on stability of 1-methylcytosine — DFT and PCM studies. J. Mol. Model. 2016, 22, 146–14.  doi: 10.1007/s00894-016-3020-2

    48. [48]

      Santos, C. I. A. V.; Ramos, M. L.; Justino, L. L. G.; Burrows, H. D.; Valente, A. J. M.; Esteso, M. A.; Leaist, D. G.; Ribeiro, A. C. F. Effect of pH in the structure and mass transport by diffusion of theophylline. J. Chem. Thermodyn. 2017, 110, 162−170.  doi: 10.1016/j.jct.2017.02.019

    49. [49]

      Gadžurić, S.; Tot, A.; Armaković, S.; Armaković, S.; Panić, J.; Jović, B.; Vraneš, M. Uncommon structure making/breaking behaviour of cholinium taurate in water. J. Chem. Thermodyn. 2017, 107, 58–64.  doi: 10.1016/j.jct.2016.12.025

    50. [50]

      Shi, Q.; Wang, Y.; Wei, D. Theoretical study on DABCO-catalyzed ring expansion of cyclopropyl ketone: mechanism, chemoselectivity, and role of catalyst. Comput. Theor. Chem. 2018, 1123, 20−25.  doi: 10.1016/j.comptc.2017.11.013

    51. [51]

      Cheng, X. Structures, bonding and thermodynamics of extracting U(Ⅵ) from aqueous nitric acid solutions with N-methyl-N-decyl-octanamide and its amide derivatives: an M06-2X investigation. J. Chem. Thermodyn. 2019, 132, 470−475.  doi: 10.1016/j.jct.2017.11.001

    52. [52]

      Zhao, Y.; Truhlar, D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215−241.  doi: 10.1007/s00214-007-0310-x

    53. [53]

      Schenker, S.; Schneider, C.; Tsogoeva, S. B.; Clark, T. Assessment of popular DFT and semiempirical molecular orbital techniques for calculating relative transition state energies and kinetic product distributions in enantioselective organocatalytic reactions. J. Chem. Theory Comput. 2011, 7, 3586−3595.  doi: 10.1021/ct2002013

    54. [54]

      Tot, A.; Armaković, S.; Armaković, S.; Gadžurić, S.; Vraneš, M. Kosmotropism of newly synthesized 1-butyl-3-methylimidazolium taurate ionic liquid: experimental and computational study. J. Chem. Thermodyn. 2016, 94, 85–95.  doi: 10.1016/j.jct.2015.10.026

    55. [55]

      Salehi, Y.; Hamzehloueian, M. The strain-promoted alkyne-nitrone and alkyne-nitrile oxide cycloaddition reactions: a theoretical study. Tetrahedron 2017, 73, 4634–4643.  doi: 10.1016/j.tet.2017.06.038

    56. [56]

      Gonzalez, C.; Schlegel, H. B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154–2161.  doi: 10.1063/1.456010

    57. [57]

      Gonzalez, C.; Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527.  doi: 10.1021/j100377a021

    58. [58]

      Zheng, W.; Ariafard, A.; Lin, Z. Understanding the highly regioselective cyanothiolation of 1-alkynes catalyzed by palladium phosphine complexes. Organometallics 2008, 27, 246–253.  doi: 10.1021/om7009446

    59. [59]

      Naka, A.; Takase, S.; Shimada, A.; Kobayashi, H.; Ishikawa, M. Platinum-catalyzed reactions of 2,3-bis(dimethylsilyl)furan with alkynes. J. Organomet. Chem. 2017, 853, 13–17.  doi: 10.1016/j.jorganchem.2017.10.016

    60. [60]

      Zhang, X.; Liu, Y.; Chen, G.; Pei, G.; Bi, S. Theoretical insight into C(sp3)−F bond activations and origins of chemo- and regioselectivities of ″tunable″ nickel-mediated/-catalyzed couplings of 2-trifluoromethyl-1-alkenes with alkynes. Organometallics 2017, 36, 3739–3749.  doi: 10.1021/acs.organomet.7b00514

    61. [61]

      Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553−566.  doi: 10.1080/00268977000101561

    62. [62]

      Simon, S.; Duran, M.; Dannenberg, J. J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 1996, 105, 11024−11031.  doi: 10.1063/1.472902

    63. [63]

      Zhu, R.; Zhang, D.; Wu, J.; Liu, C. Theoretical study of the bifunctional-urea catalyzed Michael reaction of 1,3-dicarbonyl compounds and nitroolefins: reaction mechanism and enantioselectivity. Tetrahedron: Asymmetr. 2006, 17, 1611–1616.  doi: 10.1016/j.tetasy.2006.05.033

    64. [64]

      Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735−746.  doi: 10.1063/1.449486

    65. [65]

      Uggla, R.; Sundberg, M. R.; Nevalainen, V. Boronic acids as molecular sensors NBO analysis and 13C chemical shifts as tools for evaluation of DFT geometry optimization of complexes of diphenylmethane 3, 3'-diboronic acids and glucose. Tetrahedron: Asymmetr. 1996, 7, 1741−1748.  doi: 10.1016/0957-4166(96)00208-X

    66. [66]

      Uggla, R.; Nevalainen, V.; Sundberg, M. R. On the role of π-stacking in aldehyde complexes of N-sulphonylated oxazaborolidinones used as chiral catalysts. Tetrahedron: Asymmetr. 1996, 7, 2725−2732.  doi: 10.1016/0957-4166(96)00351-5

    67. [67]

      Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506.  doi: 10.1021/ja100936w

    68. [68]

      Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580−592.  doi: 10.1002/jcc.22885

    69. [69]

      Keerthi, A.; Geim, A. K.; Janardanan, A.; Rooney, A. P.; Esfandiar, A.; Hu, S.; Dar, S. A.; Grigorieva, I. V.; Haigh, S. J.; Wang, F. C.; Radha, B. Ballistic molecular transport through two-dimensional channels. Nature 2018, 558, 420–424.  doi: 10.1038/s41586-018-0203-2

    70. [70]

      Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 1996, 14, 33−38.  doi: 10.1016/0263-7855(96)00018-5

    71. [71]

      Amesty, Á.; Burgueño-Tapia, E.; Joseph-Nathan, P.; Ravelo, Á. G.; Estévez-Braun, A. Benzodihydrofurans from cyperus teneriffae. J. Nat. Prod. 2011, 74, 1061−1065.  doi: 10.1021/np200020t

    72. [72]

      Cheng, X. L.; Li, G. X.; Wang, Z. M.; Zhao, Y. Y.; Sun, Y. F. Theoretical investigation of CH3CF2O2 + HOO reaction. Chin. J. Chem. Phys. 2007, 20, 243−248.  doi: 10.1088/1674-0068/20/03/243-248

    73. [73]

      Cheng, X. L.; Zhao, Y. Y.; Li, F.; Li, L. Q.; Tao, X. J. Reaction mechanism of the multi-channel decomposition reactions of 1-pentenyl free radicals. Chin. J. Chem. 2008, 26, 44−50.  doi: 10.1002/cjoc.200890036

  • 加载中
    1. [1]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    2. [2]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    3. [3]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    4. [4]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    7. [7]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    8. [8]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    9. [9]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    10. [10]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    11. [11]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    14. [14]

      Yunyan LiZimin CaiZhicheng WangSifeng ZhuWendian LiuCheng Wang . Construction of biomimetic hybrid nanovesicles based on M1 macrophage-derived exosomes for therapy of cancer. Chinese Chemical Letters, 2025, 36(4): 109942-. doi: 10.1016/j.cclet.2024.109942

    15. [15]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    16. [16]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    17. [17]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    18. [18]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    19. [19]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    20. [20]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

Metrics
  • PDF Downloads(1)
  • Abstract views(316)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return