Citation: Shamshirband SHAHABODDIN, Baghban ALIREZA, Nabipour NARJES, Najafi MEYSAM. Manganese Oxide (MnO) and Cadmium Dioxide (CdO2) Attached to Carbon Nanotube (8, 0) as Anodes of Metal-ion Batteries: a DFT Study[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 415-420. doi: 10.14102/j.cnki.0254-5861.2011-2463 shu

Manganese Oxide (MnO) and Cadmium Dioxide (CdO2) Attached to Carbon Nanotube (8, 0) as Anodes of Metal-ion Batteries: a DFT Study

Figures(1)

  • Performance of carbon nanotube (CNT) and their attached metal oxides (manganese oxide (MnO) and cadmium dioxide (CdO2)) structures as anode electrodes in lithium-ion battery (LIB) and potassium-ion battery (KIB) are investigated. The Gibbs free energy of adsorption of Li and K atoms/ions on surfaces of CNT (8, 0), CNT (8, 0)-MnO and CNT (8, 0)-CdO2 are calculated. The cell voltages (Vcell) of Li and K atoms/ions adsorption on studied surfaces are examined. The Vcell of LIBs with metal-oxides attached to CNT (8, 0) as anode electrodes are higher than those KIBs. The adsorbed metal oxides (MnO and CdO2) on CNT (8, 0) increased the charges, electronic conductivity and Vcell of LIB and KIB, efficiently. The CNT (8, 0)-CdO2 as anode electrodes in LIB and KIB is proposed.
  • 加载中
    1. [1]

      Sharifian, S.; Harasek, M.; Haddadi, B. Simulation of membrane gas separation process using aspen plus plus. Chem. Prod. Proc. Mod. 2016, 11, 67–72.

    2. [2]

      Sharifian, S.; Harasek, M. Dynamic simulation of hydrogen generation from renewable energy sources. Chem. Engin. Trans. 2015, 45, 409–414.

    3. [3]

      Sharifian, S.; Asasian Kolur, N.; Harasek, M. Transient simulation and modeling of photovoltaic-PEM water electrolysis. Energy Sour. 2019, 1, 1–11.

    4. [4]

      Ho, K.; Hung, W. An amperometric NO2 gas sensor based on Pt/Na on electrode. Sen. Actuat. B: Chem. 2001, 79, 11–16.  doi: 10.1016/S0925-4005(01)00782-1

    5. [5]

      Yang, J. C.; Dutta, P. K. High temperature potentiometric NO2 sensor with asymmetric sensing and reference Pt electrodes. Sen. Actuat. B: Chem. 2010, 143, 459–463.  doi: 10.1016/j.snb.2009.09.023

    6. [6]

      Yan, Y.; Miura, N.; Yamazoe, N. Potentiometric sensor using stabilized zirconia for chlorine gas. Sen. Actuat. B: Chem. 1995, 24, 287–290.  doi: 10.1016/0925-4005(95)85062-7

    7. [7]

      Khodadadi, A.; Mohajerzadeh, S. S.; Mortazavi, Y.; Miri, A. M. Cerium oxide/SnO2-based semiconductor gas sensors with improved sensitivity to CO. Sen. Actuat. B: Chem. 2001, 80, 267–271.  doi: 10.1016/S0925-4005(01)00915-7

    8. [8]

      Korotcenkov, G. Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sen. Actuat. B: Chem. 2007, 121, 664–678.  doi: 10.1016/j.snb.2006.04.092

    9. [9]

      Machado, M.; Mota, R.; Piquini, P. Electronic properties of BN nanocones under electric fields. Microelectron. J. 2003, 34, 545–547.  doi: 10.1016/S0026-2692(03)00044-2

    10. [10]

      Halpern, J. B.; Bello, A.; Gilcrease, J.; Harris, G. L.; He, M. Biphasic GaN nanowires: growth mechanism and properties. Microelectron. J. 2009, 40, 316–318.  doi: 10.1016/j.mejo.2008.07.022

    11. [11]

      Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Ahmadi, A. B12N12 nano-cage as potential sensor for NO2 detection. Chin. J. Chem. Phys. 2012, 25, 60–64.  doi: 10.1088/1674-0068/25/01/60-64

    12. [12]

      Margulis, V. A.; Muryumin, E. E. Chemisorption of single fluorine atoms on the surface of zigzag single-walled carbon nanotubes: a model calculation. Physica B 2007, 390, 134–142.  doi: 10.1016/j.physb.2006.08.003

    13. [13]

      Xiao, B.; Zhao, J.; Ding, Y. Theoretical studies of chemisorption of NO2 molecules on SiC nanotube. Surf. Sci. 2010, 604, 1882–1888.  doi: 10.1016/j.susc.2010.07.020

    14. [14]

      Mohamed, S. G. Flower-like ZnCo2O4 nanowires: toward a high-performance anode material for Li-ion batteries. RSC Adv. 2013, 3, 20143–20149.  doi: 10.1039/c3ra42625d

    15. [15]

      Fujigaya, T. Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv. Mater. 2013, 25, 1666–1681.  doi: 10.1002/adma.201204461

    16. [16]

      Yi, H. Asymmetric supercapacitors based on carbon nanotubes NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J. Power Sources 2015, 285, 281–290.  doi: 10.1016/j.jpowsour.2015.03.106

    17. [17]

      Poizot, P. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.  doi: 10.1038/35035045

    18. [18]

      Lai, X. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 2011, 50, 2738–2741.  doi: 10.1002/anie.201004900

    19. [19]

      Zu, G. Highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature catalysts. Chem. Mater. 2014, 26, 5761–5772.  doi: 10.1021/cm502886t

    20. [20]

      Cao, X. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163–3168.  doi: 10.1002/smll.201100990

    21. [21]

      Liang, Y. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.  doi: 10.1038/nmat3087

    22. [22]

      Huang, L. Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139.  doi: 10.1021/nl401086t

    23. [23]

      Raccichini, R. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.  doi: 10.1038/nmat4170

    24. [24]

      Yuan, C. Heterostructured core-shell ZnMn2O4 nanosheets@carbon nanotubes' coaxial nanocables: a competitive anode towards high-performance Li-ion batteries. Nanotechnology 2015, 26, 145401–145408.  doi: 10.1088/0957-4484/26/14/145401

    25. [25]

      Datsyuk, V. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840.  doi: 10.1016/j.carbon.2008.02.012

    26. [26]

      Xu, Y. J.; Li, J. Q. The interaction of N2 with active sites of a single-wall carbon nanotube. Chem. Phys. Lett. 2005, 412, 439–444.  doi: 10.1016/j.cplett.2005.07.053

    27. [27]

      Feng, X.; Irle, S.; Witek, H.; Morokuma, K.; Vidic, R.; Borguet, E. Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. J. Am. Chem. Soc. 2005, 127, 10533–10538.  doi: 10.1021/ja042998u

    28. [28]

      Boys, S. F.; Bernardi, F. The calculation of small molecular interact ions by the 238 differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566.  doi: 10.1080/00268977000101561

    29. [29]

      Nakashima, N. Soluble carbon nanotubes: fundamentals and applications. Int. J. Nanosci. 2005, 4, 119–137.  doi: 10.1142/S0219581X05002985

    30. [30]

      Razavi, R.; Hosseini, S. M. A.; Ranjbar, M. Production of nanosized synthetic rutile from ilmenite concentrate by sonochemical HCl and H2SO4 leaching. Iran. J. Chem. Chem. Engin. 2014, 33, 29–36.

    31. [31]

      Razavi, R.; Kardani, M. N.; Ghanbari, A.; Lariche, M. J.; Baghban, A. Utilization of LSSVM algorithm for estimating synthetic natural gas density. Petr. Sci. Techn. 2018, 36, 807–812.  doi: 10.1080/10916466.2018.1447954

    32. [32]

      Parsaee, Z.; Karachi, N.; Razavi, R. Ultrasound assisted fabrication of a novel optode base on a triazine based Schiff base immobilized on TEOS for copper detection. Ultrason. Sonochem. 2018, 47, 36–46.  doi: 10.1016/j.ultsonch.2018.04.007

    33. [33]

      Zahedifar, M.; Razavi, R.; Sheibani, H. Reaction of (chloro carbonyl) phenyl ketene with 5-amino pyrazolones: Synthesis, characterization and theoretical studies of 7-hydroxy-6-phenyl-3-(phenyldiazenyl)pyrazolo[1, 5-a]pyrimidine-2, 5(1H, 4H)-dione derivatives. J. Mol. Struc. 2016, 1125, 730–735.  doi: 10.1016/j.molstruc.2016.07.043

    34. [34]

      Karachi, N.; Hosseini, M.; Parsaee, Z.; Razavi, R. Novel high performance reduced graphene oxide based nanocatalyst decorated with Rh2O3/Rh-NPs for CO2 photoreduction. J. Photochem. Photobio. A: Chem. 2018, 364, 344–354.  doi: 10.1016/j.jphotochem.2018.06.024

    35. [35]

      Bie, R. J.; Siddiqui, M. K.; Razavi, R.; Taherkhani, M.; Najafi, M. Possibility of C38 and Si19Ge19 nanocages in anode of metal ion batteries: computational examination. Acta Chim. Slov. 2018, 65, 303–311.

    36. [36]

      Gao, W.; Guirao, J. L. G.; Chen, Y. J. A toughness condition for fractional (k, m)-deleted graphs revisited. Acta Math. Sinica 2019, 35, 1227–1237.  doi: 10.1007/s10114-019-8169-z

    37. [37]

      Škrekovski, R.; Dimitrov, D.; Zhong, J. M.; Wu, H. L.; Gao, W. Remarks on multiplicative atom-bond connectivity index. IEEE Access 2019, 7, 76806–76811.  doi: 10.1109/ACCESS.2019.2920882

    38. [38]

      Gao, W.; Guirao, J. L. G. Parameters and fractional factors in different settings. J. Inequ. Appl. 2019, 1, 152–157.

    39. [39]

      Gao, W.; Ghanbari, B.; Baskonus, H. M. New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative. Chaos. Solitons Fractals 2019, 128, 34–43.  doi: 10.1016/j.chaos.2019.07.037

    40. [40]

      Gao, W.; Aamir, M.; Iqbal, Z.; Ishaq, M.; Aslam, A. On irregularity measures of some dendrimers structures. Mathemat. 2019, 7, 271–274.

  • 加载中
    1. [1]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    2. [2]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    7. [7]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    8. [8]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    9. [9]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    10. [10]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    11. [11]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    12. [12]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    13. [13]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    14. [14]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    15. [15]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    16. [16]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    17. [17]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    18. [18]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    19. [19]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    20. [20]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

Metrics
  • PDF Downloads(1)
  • Abstract views(221)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return