Citation: Zhi-Wen ZENG, Xiang LI, Fu-Xing ZHANG, Meysam NAJAFI. Study of Mechanisms of CO and NO2 Oxidation on Zn–CNT (6, 0) and Zn–BNNT (6, 0), Mn–B38N38 and Mn–C76[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 41-47. doi: 10.14102/j.cnki.0254-5861.2011-2461 shu

Study of Mechanisms of CO and NO2 Oxidation on Zn–CNT (6, 0) and Zn–BNNT (6, 0), Mn–B38N38 and Mn–C76

  • Corresponding author: Zhi-Wen ZENG, aichayu520@163.com Meysam NAJAFI, iau.mnajafi@yahoo.com
  • Received Date: 17 May 2019
    Accepted Date: 20 November 2019

    Fund Project: The Innovation Platform Open Foundation for Colleges and Universities of Hunan Province – Synthesis, Structure and Performance of Metal Ions Fluorescent Probes Based on Complex ones GN19K02

Figures(3)

  • The abilities and performances of Mn–C76, Mn–B38N38, Zn–CNT (6, 0) and Zn–BNNT (6, 0) to the oxidation of NO2 and CO are investigated. The oxidation reactions of NO2 and CO through the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms by theoretical methods are examined. The most stable intermediates of oxidation reactions of NO2 and CO on Mn–C76, Mn–B38N38, Zn–CNT (6, 0) and Zn–BNNT (6, 0) are obtained from thermodynamics view point. In the LH pathway, Mn–C76, Mn–B38N38, Zn–CNT (6, 0) and Zn–BNNT (6, 0) catalysts are deactivated via the second NO2 and CO molecules. In the ER pathway, the second NO3 and CO2 molecules are separated. Finally, the Mn–C76, Mn–B38N38, Zn–CNT (6, 0) and Zn–BNNT (6, 0) are proposed to oxidize NO2 and CO molecules with high performances at room temperature.
  • 加载中
    1. [1]

      Sharifian, S.; Harasek, M.; Haddadi, B. Simulation of membrane gas separation process using aspen plus@V8.6. Chem. Prod. Proc. Mod. 2016, 11, 67–72.

    2. [2]

      Sharifian, S.; Harasek, M. Dynamic simulation of hydrogen generation from renewable energy sources. Chem. Engin. Trans. 2015, 45, 409–414.

    3. [3]

      Sharifian, S.; Asasian Kolur, N.; Harasek, M. Transient simulation and modeling of photovoltaic-PEM water electrolysis. Energy Sour. 2019, 1, 1–11.

    4. [4]

      Ho, K.; Hung, W. An amperometric NO2 gas sensor based on Pt/Na on electrode. Sen. Actuat. B: Chem. 2001, 79, 11–16.  doi: 10.1016/S0925-4005(01)00782-1

    5. [5]

      Yang, J. C.; Dutta, P. K. High temperature potentiometric NO2 sensor with asymmetric sensing and reference Pt electrodes. Sen. Actuat. B: Chem. 2010, 143, 459–463.  doi: 10.1016/j.snb.2009.09.023

    6. [6]

      Yan, Y.; Miura, N.; Yamazoe, N. Potentiometric sensor using stabilized zirconia for chlorine gas. Sen. Actuat. B: Chem. 1995, 24, 287–290.  doi: 10.1016/0925-4005(95)85062-7

    7. [7]

      Khodadadi, A.; Mohajerzadeh, S. S.; Mortazavi, Y.; Miri, A. M. Cerium oxide/SnO2-based semiconductor gas sensors with improved sensitivity to CO. Sen. Actuat. B: Chem. 2001, 80, 267–271.  doi: 10.1016/S0925-4005(01)00915-7

    8. [8]

      Korotcenkov, G. Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sen. Actuat. B: Chem. 2007, 121, 664–678.  doi: 10.1016/j.snb.2006.04.092

    9. [9]

      Machado, M.; Mota, R.; Piquini, P. Electronic properties of BN nanocones under electric fields. Microelectron. J. 2003, 34, 545–547.  doi: 10.1016/S0026-2692(03)00044-2

    10. [10]

      Halpern, J. B.; Bello, A.; Gilcrease, J.; Harris, G. L.; He, M. Biphasic GaN nanowires: growth mechanism and properties. Microelectron. J. 2009, 40, 316–318.  doi: 10.1016/j.mejo.2008.07.022

    11. [11]

      Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Ahmadi, A. B12N12 nano-cage as potential sensor for NO2 detection. Chin. J. Chem. Phys. 2012, 25, 60–64.  doi: 10.1088/1674-0068/25/01/60-64

    12. [12]

      Margulis, V. A.; Muryumin, E. E. Chemisorption of single fluorine atoms on the surface of zigzag single-walled carbon nanotubes: a model calculation. Physica B 2007, 390, 134–142.  doi: 10.1016/j.physb.2006.08.003

    13. [13]

      Xiao, B.; Zhao, J.; Ding, Y. Theoretical studies of chemisorption of NO2 molecules on SiC nanotube. Surf. Sci. 2010, 604, 1882–1888.  doi: 10.1016/j.susc.2010.07.020

    14. [14]

      Wu, R. Q.; Yang, M.; Lu, H. Y.; Feng, Y. P.; Huang, Z. G.; Wu, Q. Y. Silicon carbide nano-tubes as potential gas sensors for CO and HCN detection. J. Phys. Chem. C 2008, 112, 15985–15988.  doi: 10.1021/jp804727c

    15. [15]

      Gordillo, M. C. Conditions for H2 adsorption in the interstitials of a bundle of carbon nanotubes. Phys. Rev. B 2007, 76, 115402–115408.  doi: 10.1103/PhysRevB.76.115402

    16. [16]

      Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Ahmadi, A. Theoretical study of hydrogen adsorption on the B12P12 fullerene-like nanocluster. Comp. Mater. Sci. 2012, 54, 115–118.  doi: 10.1016/j.commatsci.2011.09.039

    17. [17]

      Schmidt, M.; Baldridge, K.; Boatz, J.; Elbert, S.; Gordon, M.; Jensen, J.; Koseki, S.; Matsunaga, N.; Nguyen, K.; Su, S.; Windus, T.; Dupuis, M. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363.  doi: 10.1002/jcc.540141112

    18. [18]

      Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. 2004, 25, 1463–1471.  doi: 10.1002/jcc.20078

    19. [19]

      Andzelm, J.; Kolmel, C. Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J. Chem. Phys. 1995, 103, 9312–9320.  doi: 10.1063/1.469990

    20. [20]

      Gan, L. H.; Zhao, J. Q. Theoretical investigation of (5, 5), (9, 0) and (10, 10) closed WCNTs. Physica E 2009, 41, 1249–1252.  doi: 10.1016/j.physe.2009.02.014

    21. [21]

      Beheshtian, J.; Peyghan, A. A.; Bagheri, Z. Adsorption and dissociation of Cl2 molecule on ZnO nanocluster. Appl. Surf. Sci. 2012, 258, 8171–8176.  doi: 10.1016/j.apsusc.2012.05.016

    22. [22]

      Dinadayalane, T. C.; Murray, J. S.; Concha, M. C.; Politzer, P.; Leszczynski, J. Reactivities of sites on 5, 5. Single walled carbon nanotubes with and without a Stone-Wales defect. J. Chem. Theory Comp. 2010, 6, 1351–1357.  doi: 10.1021/ct900669t

    23. [23]

      Hamadanian, M.; Khoshnevisan, B.; KalantariFotooh, F.; Tavangar, Z. Computational study of super cell Al-substituted single-walled carbon nanotubes as CO sensor. Comp. Mater. Sci. 2012, 58, 45–51.  doi: 10.1016/j.commatsci.2012.01.001

    24. [24]

      Hamadanian, M.; Fotooh, F. K. Density functional study of Al/N co-doped (10, 0) zigzag single-walled carbon nanotubes as CO sensor. Comp. Mater. Sci. 2014, 82, 497–502.  doi: 10.1016/j.commatsci.2013.10.021

    25. [25]

      Hamadanian, M.; Khoshnevisan, B.; Fotooh, F. K. Density functional study of super cell N-doped (10, 0) zigzag single-walled carbon nanotubes as CO sensor. Struct. Chem. 2011, 22, 1205–1211.  doi: 10.1007/s11224-011-9814-z

    26. [26]

      Xu, Y. J.; Li, J. Q. The interaction of N2 with active sites of a single-wall carbon nanotube. Chem. Phys. Lett. 2005, 412, 439–444.  doi: 10.1016/j.cplett.2005.07.053

    27. [27]

      Feng, X.; Irle, S.; Witek, H.; Morokuma, K.; Vidic, R.; Borguet, E. Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. J. Am. Chem. Soc. 2005, 127, 10533–10538.  doi: 10.1021/ja042998u

    28. [28]

      Boys, S. F.; Bernardi, F. The calculation of small molecular interact ions by the 238differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566.  doi: 10.1080/00268977000101561

    29. [29]

      Nakashima, N. Soluble carbon nanotubes: fundamentals and applications. Int. J. Nanosci. 2005, 4, 119–137.  doi: 10.1142/S0219581X05002985

    30. [30]

      Razavi, R.; Hosseini, S. M. A.; Ranjbar, M. Production of nanosized synthetic rutile from ilmenite concentrate by sonochemical HCl and H2SO4 leaching. Iran. J. Chem. Chem. Engin. 2014, 33, 29–36.

    31. [31]

      Razavi, R.; Kardani, M. N.; Ghanbari, A.; Lariche, M. J.; Baghban, A. Utilization of LSSVM algorithm for estimating synthetic natural gas density. Petrol. Sci. Technol. 2018, 36, 807–812.  doi: 10.1080/10916466.2018.1447954

    32. [32]

      Parsaee, Z.; Karachi, N.; Razavi, R. Ultrasound assisted fabrication of a novel optode base on a triazine based Schiff base immobilized on TEOS for copper detection. Ultrason. Sonochem. 2018, 47, 36–46.  doi: 10.1016/j.ultsonch.2018.04.007

    33. [33]

      Zahedifar, M.; Razavi, R.; Sheibani, H. Reaction of (chloro carbonyl) phenyl ketene with 5-amino pyrazolones: synthesis, characterization and theoretical studies of 7-hydroxy-6-phenyl-3-(phenyldiazenyl) pyrazolo [1, 5-a]pyrimidine-2, 5(1H, 4H)-dione derivatives. J. Mol. Struct. 2016, 1125, 730–735.  doi: 10.1016/j.molstruc.2016.07.043

    34. [34]

      Karachi, N.; Hosseini, M.; Parsaee, Z.; Razavi, R. Novel high performance reduced graphene oxide based nanocatalyst decorated with Rh2O3/Rh-NPs for CO2 photoreduction. J. Photochem. Photobio. A: Chem. 2018, 364, 344–354.  doi: 10.1016/j.jphotochem.2018.06.024

    35. [35]

      Bie, R. J.; Siddiqui, M. K.; Razavi, R.; Taherkhani, M.; Najafi, M. Possibility of C38 and Si19Ge19 nanocages in anode of metal ion batteries: computational examination. Acta Chim. Slov. 2018, 65, 303-311.

    36. [36]

      Gao, W.; Guirao, J. L. G.; Chen, Y. J. A toughness condition for fractional (k, m)-deleted graphs revisited. Acta Math. Sinica 2019, 35, 1227–1237.  doi: 10.1007/s10114-019-8169-z

    37. [37]

      Škrekovski, R.; Dimitrov, D.; Zhong, J. M.; Wu, H. L.; Gao, W. Remarks on multiplicative atom-bond connectivity index. IEEE Access 2019, 7, 76806–76811.  doi: 10.1109/ACCESS.2019.2920882

    38. [38]

      Gao, W.; Guirao, J. L. G. Parameters and fractional factors in different settings. J. Inequ. Appl. 2019, 1, 152–157.

    39. [39]

      Gao, W.; Ghanbari, B.; Baskonus, H. M. New numerical simulations for some real world problems with Atangana-Baleanu fractional derivative. Chaos. Solitons Fractals 2019, 128, 34–43.  doi: 10.1016/j.chaos.2019.07.037

    40. [40]

      Gao, W.; Aamir, M.; Iqbal, Z.; Ishaq, M.; Aslam, A. On irregularity measures of some dendrimers structures. Mathemat. 2019, 7, 271–274.

  • 加载中
    1. [1]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    2. [2]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    3. [3]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    4. [4]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    7. [7]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    8. [8]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    9. [9]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    10. [10]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    11. [11]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    12. [12]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    15. [15]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    16. [16]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    17. [17]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    18. [18]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    19. [19]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    20. [20]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

Metrics
  • PDF Downloads(1)
  • Abstract views(301)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return