Citation: Song-Shan QIU, Cui-Cui JIANG, Ru-Jin ZHOU, Chun-Hai LI. Geometrical Structures and Activities of Free Radical Scavenging Studies of Baicalein and Scutellarein[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 57-65. doi: 10.14102/j.cnki.0254-5861.2011-2391 shu

Geometrical Structures and Activities of Free Radical Scavenging Studies of Baicalein and Scutellarein

  • Corresponding author: Cui-Cui JIANG, 534365779@qq.com Ru-Jin ZHOU, 40305170@qq.com
  • Received Date: 1 April 2019
    Accepted Date: 24 June 2019

    Fund Project: the Natural Science Fundation of Guangdong Province 2018A030307051Science and Technology Planning Project of Guangdong Province 2017A020225043Science and Technology Planning Project of Guangdong Province 2012gczxB001

Figures(4)

  • In order to study the free radical scavenging capacity and molecular structures of baicalein and scutellarein, the structure-activity relationship of these two molecules was analyzed. The geometric structures of the compounds were optimized by DMol3 code based on density functional theory. The theoretical parameters of the atomic charge distribution, the distribution of molecular frontier orbital, the energy difference and Fukui functions were calculated. Meantime, superoxide anion free radical and 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH) methods were used to determine the scavenging capacity of the compounds. The results showed that the scavenging rate of DPPH radicals and superoxide anion radicals increased with the increase of sample concentration, and had a dose-effect relationship. The radical-scavenging activities in the order of baicalein > scutellarein > BHT were showed. The p-π conjugation of the hydroxyl oxygen atom influenced the certain ability to repelling electrons in the molecular structures of baicalein and scutellarein based on the data of the atomic charge distribution, the distribution of molecular frontier orbital, the energy difference and Fukui functions. Hydroxyl groups were more susceptible to attack and exhibit free radical scavenging activity. The oxygen atom in the phenolic hydroxyl group of the molecule structure of the samples may be the reaction active sites where the electrophilic reaction occurred. These results offer useful theoretical bases for the research and application of antioxidant activities of substances containing such molecular structures.
  • 加载中
    1. [1]

      Li, K.; Fan, H.; Yin, P.; Xue, Q.; Li, X.; Sun, L.; Liu, Y. Structure-activity relationship of eight high content flavonoids analyzed with a preliminary assign-score method and their contribution to antioxidant ability of flavonoids-rich extract from Scutellaria baicalensis shoots. Arab. J. Chem. 2018, 11, 159−170.  doi: 10.1016/j.arabjc.2017.08.002

    2. [2]

      Wang, J.; Zhang, L.; Liu, B.; Wang, Q.; Chen, Y.; Wang, Z.; Zhou, J.; Xiao W.; Zheng, C.; Wang, Y. Systematic investigation of the Erigeron breviscapus mechanism for treating cerebrovascular disease. J. Ethnopharmacol. 2018, 224, 429−440.  doi: 10.1016/j.jep.2018.05.022

    3. [3]

      Sun, W.; Sun, J.; Zhang, B.; Xing, Y.; Yu, X.; Li, X; Xiu, Z.; Dong, Y. Baicalein improves insulin resistance via regulating SOCS3 and enhances the effect of acarbose on diabetes prevention. J. Funct. Foods 2017, 37, 339−353.  doi: 10.1016/j.jff.2017.08.005

    4. [4]

      Ma, J.; Li, S.; Zhu, L.; Guo, S.; Yi, X.; Cui, T.; He, Y.; Chang, Y.; Liu, B.; Li, C.; Jian, Z. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Free Radical Bio. Med. 2018, 129, 492−503.  doi: 10.1016/j.freeradbiomed.2018.10.421

    5. [5]

      Zeng, N.; Zhang, G.; Hu, X.; Pan, J.; Zhou, Z.; Gong, D. Inhibition mechanism of baicalein and baicalin on xanthine oxidase and their synergistic effect with allopurinol. J. Funct. Foods 2018, 50, 172−182.  doi: 10.1016/j.jff.2018.10.005

    6. [6]

      Weng, Z. M.; Ge, G. B.; Dou, T. Y.; Wang, P.; Liu, P. K.; Tian, X. H.; Qiao, N.; Yu, Y.; Zou, L. W.; Zhou, Q.; Zhang, W. D.; Hou, J. Characterization and structure-activity relationship studies of flavonoids as inhibitors against human carboxylesterase 2. Bioorg. Chem. 2018, 77, 320−329.  doi: 10.1016/j.bioorg.2018.01.011

    7. [7]

      Kareem, H. S.; Ariffin, A.; Nordin, N.; Heidelberg, T.; Abdul-Aziz, A.; Kong, K. W.; Yehye, W. A. Correlation of antioxidant activities with theoretical studies for new hydrazone compounds bearing a 3, 4, 5-trimethoxy benzyl moiety. Eur. J. Med. Chem. 2015, 103, 497−505.  doi: 10.1016/j.ejmech.2015.09.016

    8. [8]

      Qiu, S.; Jiang, C.; Huang, Y.; Zhou, R. Theoretical investigation on the relationship between the structures and antioxidant activities of myricetin and dihydromyricetin. Chin. J. Struct. Chem. 2017, 6, 1−5.

    9. [9]

      Zheng, Y. Z.; Deng, G.; Chen, D. F.; Guo, R.; Lai, R. C. The influence of C2C3 double bond on the antiradical activity of flavonoid: different mechanisms analysis. Phytochemistry 2019, 157, 1−7.  doi: 10.1016/j.phytochem.2018.10.015

    10. [10]

      Li, J.; Tian, C.; Xia, Y.; Mutanda I.; Wang, Y. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Metab. Eng. 2019, 52, 124−133.  doi: 10.1016/j.ymben.2018.11.008

    11. [11]

      Pan, X.; Wu, S.; Yan, Y.; Chen, X.; Guan, J.; Bao, Y.; Xiong, X.; Liu, L. Rice bran polysaccharide-metal complexes showed safe antioxidant activity in vitro. Int. J. Biol. Macromol. 2019, 126, 934−940.  doi: 10.1016/j.ijbiomac.2018.12.265

    12. [12]

      Bajpai, V. K.; Park, I. W.; Lee, J.; Shukla, S.; Nile, S. H.; Chun, H. S.; Khan, I.; Oh, S. Y.; Lee, H.; Huh, Y. S.; Na, M.; Han, Y. K. Antioxidant and antimicrobial efficacy of a biflavonoid, amentoflavone from Nandina domestica in vitro and in minced chicken meat and apple juice food models. Food Chem. 2019, 271, 329−247.

    13. [13]

      Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756−7764.  doi: 10.1063/1.1316015

    14. [14]

      Ghasemi, A.; Asgarpour, Khansary, M.; Marjani, A.; Shirazian, S. Using quantum chemical modeling and calculations for evaluation of cellulose potential for estrogen micropollutants removal from water effluents. Chemosphere 2017, 178, 411−423.  doi: 10.1016/j.chemosphere.2017.02.152

    15. [15]

      Xu, S.; Wang, G.; Liu, H.; Wang, L.; Wang, H. A DMol3 study on the reaction between trans-resveratrol and hydroperoxyl radical: dissimilarity of antioxidant activity among O–H groups of trans-resveratrol. J. Mol. Sruc-Theochem. 2007, 809, 79−85.  doi: 10.1016/j.theochem.2007.01.036

    16. [16]

      Claudia, S. Y.; Carolina, M.; Jorge, I. M. A. A theoretical assessment of antioxidant capacity of flavonoids by means of local hyper-softness. Arab. J. Chem. 2018, 11, 554−563.  doi: 10.1016/j.arabjc.2017.10.011

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    3. [3]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    4. [4]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    9. [9]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    10. [10]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    11. [11]

      Xiaoshuai WuBailei WangYichen LiXiaoxuan GuanMingjing YinWenquan LvYin ChenFei LuTao QinHuyang GaoWeiqian JinYifu HuangCuiping LiMing GaoJunyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211

    12. [12]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    13. [13]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    14. [14]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    15. [15]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    16. [16]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    17. [17]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    18. [18]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    19. [19]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    20. [20]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

Metrics
  • PDF Downloads(7)
  • Abstract views(485)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return