Citation: Chang-Xin LIN, Xiang-Xin ZHNAG, Yong-Chuan LIU, Su-Jing CHEN, Wei WANG, Yi-Ning ZHANG. Effect of Flow-rate Induced Cation Mixing and Particle Size Tuning on the Structure and Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 Synthesized by Spray Drying[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 164-173. doi: 10.14102/j.cnki.0254-5861.2011-2383 shu

Effect of Flow-rate Induced Cation Mixing and Particle Size Tuning on the Structure and Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 Synthesized by Spray Drying

  • Corresponding author: Wei WANG, wangwei@fjirsm.ac.cn Yi-Ning ZHANG, ynzhang@fjirsm.ac.cn
  • Received Date: 29 March 2019
    Accepted Date: 4 June 2019

    Fund Project: the National Natural Science Foundation of China 51602310Fujian Provincial Department of Science and Technology 2019T3017the DNL Cooperation Fund, CAS DNL180308

Figures(6)

  • Lithium ion battery cathode material LiNi0.8Co0.1Mn0.1O2 (NCM811) was synthe-sized via a spray drying method. The effect of different spray drying flow-rates (200, 250, 300, and 400 mL·min-1) on the structural and electrochemical properties of NCM811 are investigated. We find that the contents of Ni, Co, and Mn in the NCM811 cathode materials do not change significantly with the changing flow-rate, but the lattice parameter and morphology of the materials are significantly affected. Under the optimal spray drying flow-rate (250 mL·min -1), the obtained NCM811 cathode (250NCM811) exhibits the best crystallinity, with the highest ratio of I(003)/I(104) in the XRD pattern. SEM images reveal the spherical morphology of 250NCM811 and the average diameter of about 5 μm. The results of electrochemical test show that the reversible capacity of 250NCM811 reaches 210 mA·g-1 at 0.2 C (1 C = 280 mA·g-1). After 100 charge-discharge cycles at 1 C, the battery retains more than 94% of its initial capacity. Overall, spray drying flow-rate demonstrates great effect on the electrochemical properties of NCM811.
  • 加载中
    1. [1]

      Taracson, J.; Armand, M. Issues and challenges facing lithium ion batteries. Nature 2001, 414, 359–367.  doi: 10.1038/35104644

    2. [2]

      Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.  doi: 10.1021/cr020731c

    3. [3]

      Pelosato, R.; Cordaro, G.; Stucchi, D.; Cristiani, C.; Dotelli, G. Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: a brief review. J. Power. Sources 2015, 298, 46–67.  doi: 10.1016/j.jpowsour.2015.08.034

    4. [4]

      Yi, T. F.; Zhu, Y. R.; Zhu, X. D.; Shu, J.; Yue, C. B.; Zhou, A. N. A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics. 2009, 15, 779–784.  doi: 10.1007/s11581-009-0373-x

    5. [5]

      Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energ. Environ. Sci. 2011, 4, 3243–3262.  doi: 10.1039/c1ee01598b

    6. [6]

      Chen, Z.; Dahn, J. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta. 2004, 49, 1079–1090.  doi: 10.1016/j.electacta.2003.10.019

    7. [7]

      Myung, S. T.; Maglia, F.; Park, K. J.; Yoon, C. S.; Lamp, P.; Kim, S. J.; Sun, Y. K. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS. Energy. Lett. 2016, 2, 196-223.

    8. [8]

      Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. -Int. Edit. 2015, 54, 4440–4457.  doi: 10.1002/anie.201409262

    9. [9]

      Manthiram, A.; Knight, J. C.; Myung, S. T.; Oh, S. M.; Sun, Y. K. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater. 2016, 6, 1501010.  doi: 10.1002/aenm.201501010

    10. [10]

      Kim, H. S.; Jin, B. S.; Jung, Y. S.; Lee, S.; Jeon, M.; Lim, H. T. In Enhanced electrochemical performance of surface-treated Li [Ni0. 8Co0. 1Mn0. 1]O2 cathode material for lithium-ion batteries, 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), IEEE: 2016, 641–646.

    11. [11]

      Li, J.; Li, Y.; Guo, Y.; Lv, J.; Yi, W.; Ma, P. A facile method to enhance electrochemical performance of high-nickel cathode material Li(Ni0.8Co0.1 Mn0.1)O2 via Ti doping. J. Mater. Sci-Mater. El. 2018, 29, 10702–10708.  doi: 10.1007/s10854-018-9093-1

    12. [12]

      Zhang, J.; Zhong, H.; Zheng, C.; Xia, Y.; Liang, C.; Huang, H.; Gan, Y.; Tao, X.; Zhang, W. All-solid-state batteries with slurry coated LiNi0.8 Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: effect of binder content. J. Power Sources 2018, 391, 73–79.  doi: 10.1016/j.jpowsour.2018.04.069

    13. [13]

      Perednis, D.; Gauckler, L. Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ion 2004, 166, 229–239.  doi: 10.1016/j.ssi.2003.11.011

    14. [14]

      Li, D.; Haneda, H.; Hishita, S.; Ohashi, N.; Labhsetwar, N. K. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluorine. Chem. 2005, 126, 69–77.  doi: 10.1016/j.jfluchem.2004.10.044

    15. [15]

      Hao, J.; Studenikin, S.; Cocivera, M. Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis. J. Lumin. 2001, 93, 313–319.  doi: 10.1016/S0022-2313(01)00207-1

    16. [16]

      Shinde, V.; Gujar, T.; Lokhande, C. LPG sensing properties of ZnO films prepared by spray pyrolysis method: effect of molarity of precursor solution. Sensor Actuat. B-Chem. 2007, 120, 551–559.  doi: 10.1016/j.snb.2006.03.007

    17. [17]

      Jung, D. S.; Ko, Y. N.; Kang, Y. C.; Park, S. B. Recent progress in electrode materials produced by spray pyrolysis for next-generation lithium ion batteries. Adv. Powder. Technol. 2014, 25, 18–31.  doi: 10.1016/j.apt.2014.01.012

    18. [18]

      Liu, W. M.; Hu, G. R.; Peng, Z. D.; Du, K.; Cao, Y. B.; Liu, Q. Synthesis of spherical LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries by a co-oxidation-controlled crystallization method. Chin. Chem. Lett. 2011, 22, 1099–1102.  doi: 10.1016/j.cclet.2011.01.041

    19. [19]

      Hu, G.; Liu, W.; Peng, Z.; Du, K.; Cao, Y. Synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 prepared from the precursor Ni0.8Co0.15Al0.05OOH. J. Power Sources 2012, 198, 258–263.  doi: 10.1016/j.jpowsour.2011.09.101

    20. [20]

      Wang, M.; Zhang, R.; Gong, Y.; Su, Y.; Xiang, D.; Chen, L.; Chen, Y.; Luo, M.; Chu, M. Improved electrochemical performance of the LiNi0.8Co0.1Mn0.1O2 material with lithium-ion conductor coating for lithium-ion batteries. Solid State Ion 2017, 312, 53–60.  doi: 10.1016/j.ssi.2017.10.017

    21. [21]

      Zheng, J.; Yan, P.; Estevez, L.; Wang, C.; Zhang, J. G. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano. Energy 2018, 49, 538–548.  doi: 10.1016/j.nanoen.2018.04.077

    22. [22]

      Nam, K. W.; Bak, S. M.; Hu, E.; Yu, X.; Zhou, Y.; Wang, X.; Wu, L.; Zhu, Y.; Chung, K. Y.; Yang, X. Q. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 1047–1063.  doi: 10.1002/adfm.201200693

    23. [23]

      Hsieh, C. T.; Hsu, H. H.; Hsu, J. P.; Chen, Y. F.; Chang, J. K. Infrared-assisted synthesis of lithium nickel cobalt alumina oxide powders as electrode material for lithium-ion batteries. Electrochim. Acta 2016, 206, 207–216.  doi: 10.1016/j.electacta.2016.04.146

    24. [24]

      Zheng, X.; Li, X.; Zhang, B.; Wang, Z.; Guo, H.; Huang, Z.; Yan, G.; Wang, D.; Xu, Y. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials obtained by atomization co-precipitation method. Ceram. Int. 2016, 42, 644–649.  doi: 10.1016/j.ceramint.2015.08.159

    25. [25]

      Li, H. H.; Yabuuchi, N.; Meng, Y. S.; Kumar, S.; Breger, J.; Grey, C. P.; Shao-Horn, Y. Changes in the cation ordering of layered O3LixNi0.5Mn0.5O2 during electrochemical cycling to high voltages: an electron diffraction study. Chem. Mater. 2007, 19, 2551–2565.  doi: 10.1021/cm070139+

    26. [26]

      Li, J.; Xiong, S.; Liu, Y.; Ju, Z.; Qian, Y. Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano. Energy 2013, 2, 1249–1260.  doi: 10.1016/j.nanoen.2013.06.003

    27. [27]

      Liang, C.; Kong, F.; Longo, R. C.; Kc, S.; Kim, J. S.; Jeon, S.; Choi, S.; Cho, K. Unraveling the origin of instability in Ni-rich LiNi1–2xCoxMnxO2 (NCM) cathode materials. J. Phys. Chem. C 2016, 120, 6383–6393.

    28. [28]

      Yao, Y.; Liu, H.; Li, G.; Peng, H.; Chen, K. Synthesis and electrochemical performance of phosphate-coated porous LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Electrochim. Acta 2013, 113, 340–345.  doi: 10.1016/j.electacta.2013.09.071

    29. [29]

      Yan, J.; Liu, H.; Wang, Y.; Zhao, X.; Mi, Y.; Xia, B. Enhanced high-temperature cycling stability of LiMn2O4 by LiCoO2 coating as cathode material for lithium ion batteries. J. Mater. Sci. Chem. Eng. 2014, 2, 12–18.

    30. [30]

      Barsoukov, E.; Kim, D.; Lee, H. S.; Lee, H.; Yakovleva, M.; Gao, Y.; Engel, J. F. Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy. Solid State Ion. 2003, 161, 19–29.  doi: 10.1016/S0167-2738(03)00150-4

    31. [31]

      Abraham, D.; Twesten, R.; Balasubramanian, M.; Petrov, I.; McBreen, J.; Amine, K. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells. Electrochem. Commun. 2002, 4, 620–625.  doi: 10.1016/S1388-2481(02)00388-0

    32. [32]

      Jo, M.; Hong, Y. S.; Choo, J.; Cho, J. Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries. J. Electrochem. Soc. 2009, 156, A430–A434.  doi: 10.1149/1.3111031

  • 加载中
    1. [1]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    2. [2]

      Runjing XuXin GaoYa ChenXiaodong ChenLifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852

    3. [3]

      Na LiWenxue WangPeng WangZhanying SunXinlong TianXiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731

    4. [4]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    5. [5]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    6. [6]

      Fan WuShaoyang WuXin YeYurong RenPeng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851

    7. [7]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    8. [8]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    9. [9]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    10. [10]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    11. [11]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    12. [12]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    13. [13]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    14. [14]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    15. [15]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    16. [16]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    17. [17]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    18. [18]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    19. [19]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    20. [20]

      Bing JiangGang ZouBi LuoYan GuoJingru LiWendi ZhangQianxiao FanLehao LiuLihua ChuQiaobao ZhangMeicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801

Metrics
  • PDF Downloads(1)
  • Abstract views(275)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return