Citation: Cong-Cong JIN, Zi-Bin CHEN, Jian-Wen CHENG. An Unusual (3, 11)-Connected Network Constructed by Tri-nuclear Lanthanide Building Units and Mixed Ligands[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 104-109. doi: 10.14102/j.cnki.0254-5861.2011-2381 shu

An Unusual (3, 11)-Connected Network Constructed by Tri-nuclear Lanthanide Building Units and Mixed Ligands

  • Corresponding author: Jian-Wen CHENG, jwcheng@zjnu.cn
  • Received Date: 29 March 2019
    Accepted Date: 4 June 2019

    Fund Project: NNSFC 21471130

Figures(3)

  • Under hydrothermal conditions, a new lanthanide coordination polymer, [Er3(oba)4(na)]n (1, oba = 4, 4'-oxybis(benzoate), na = nicotinic acid) has been synthesized. Compound 1 shows a 3D framework by incorporating tri-nuclear [Er3(COO)6] unit and the mixed ligands of oba2- and na-. It is interesting that decarboxylation occurred in the ortho position and 2, 3-pyridinedicarboxylic acid was partially transformed into na under hydrothermal conditions. Compound 1 can be reduced into a (3, 11)-connected net and displays weak second-harmonic generation response. Furthermore, the PXRD, TGA and IR spectra were also studied.
  • 加载中
    1. [1]

      Ma, J.; Guo, J.; Wang, H.; Li, B.; Yang, T.; Chen, B. Microporous lanthanide metal-organic framework constructed from lanthanide metalloligand for selective separation of C2H2/CO2 and C2H2/CH4 at room temperature. Inorg. Chem. 2017, 56, 7145-7150.  doi: 10.1021/acs.inorgchem.7b00762

    2. [2]

      (a) Li, Y.; Wang, Y.; Liu, Q. The highly connected MOFs constructed from nonanuclear and trinuclear lanthanide-carboxylate clusters: selective gas adsorption and luminescent pH sensing. Inorg. Chem. 2017, 56, 2159-2164. (b) Wang, Y.; Han, C.; Zhang, Y.; Liu, Q.; Liu, C.; Yin, S. Fine-tuning ligand to modulate the magnetic anisotropy in a carboxylate-bridged Dy2 single-molecule magnet system. Inorg. Chem. 2016, 55, 5578-5584.

    3. [3]

      (a) Gao, M.; Wang, W.; Liu, L.; Han, Z.; Wei, N.; Cao, X.; Yuan, D. Microporous hexanuclear Ln(III) cluster-based metal-organic frameworks: color tunability for barcode application and selective removal of methylene blue. Inorg. Chem. 2017, 56, 511-517. (b) Zhou, L.; Deng, W.; Wang, Y.; Xu, G.; Yin, S.; Liu, Q. Lanthanide-potassium biphenyl-3, 3'-disulfonyl-4, 4'-dicarboxylate frameworks: gas sorption, proton conductivity, and luminescent sensing of metal ions. Inorg. Chem. 2016, 55, 6271-6277.

    4. [4]

      Li, B.; Chen, B. Porous lanthanide metal-organic frameworks for gas storage and separation. Struct. Bond. 2015, 163, 75–108.

    5. [5]

      Chen, L.; Jiang, F.; Zhou, K.; Wu, M.; Hong, M. Metal-organic frameworks based on lanthanide clusters. Struct. Bond. 2015, 163, 145–184.

    6. [6]

      Cheng, J.; Yang, G. Hydrothermal synthesis of lanthanide and lanthanide-transition-metal cluster organic frameworks via synergistic coordination strategy. Struct. Bond. 2017, 173, 97–120.

    7. [7]

      Sun, Y.; Zhang, J.; Yang, G. Two novel luminescent lanthanide sulfate-carboxylates with an unusual 2-D bamboo-raft-like structure based on the linkages of left- and right handed helical tubes involving in situ decarboxylation. Chem. Commun. 2006, 1947–1949.

    8. [8]

      Zhang, Z.; Zhang, Y.; Zheng, Z. Lanthanide hydroxide cluster complexes via ligand-controlled hydrolysis of the lanthanide ions. Struct. Bond. 2017, 173, 1–50.

    9. [9]

      Xu, H.; Fang, M.; Cao, C.; Qiao, W.; Zhao, B. Unique (3, 4, 10)-connected lanthanide-organic framework as a recyclable chemical sensor for detecting Al3+. Inorg. Chem. 2016, 55, 4790-4794.  doi: 10.1021/acs.inorgchem.6b00190

    10. [10]

      (a) Cheng, J.; Zheng, S.; Yang, G. Diversity of crystal structure with different lanthanide ions involving in situ oxidation-hydrolysis reaction. Dalton Trans. 2007, 4059–4066. (b) Cheng, J.; Zheng, S.; Liu, W.; Yang, G. An unusual eight-connected self-penetrating ilc net constructed by dinuclear lanthanide building units. CrystEngComm. 2008, 10, 765–769.

    11. [11]

      Fang, W.; Yang, G. Induced aggregation and synergistic coordination strategy in cluster organic architectures. Acc. Chem. Res. 2018, 51, 2888-2896.  doi: 10.1021/acs.accounts.8b00346

    12. [12]

      Long, D.; Blake, A. J.; Champness, N. R.; Wilson, C.; Schröder, M. Unprecedented seven- and eight-connected lanthanide coordination networks. Angew. Chem. Int. Ed. 2001, 40, 2443–2447.  doi: 10.1002/1521-3773(20010702)40:13<2443::AID-ANIE2443>3.0.CO;2-C

    13. [13]

      Sun, Y.; Zhang, J.; Chen, Y.; Yang, G. Porous lanthanide-organic open frameworks with helical tubes constructed from interweaving triple-helical and double-helical chains. Angew. Chem. Int. Ed. 2005, 44, 5814–5817.  doi: 10.1002/anie.200500453

    14. [14]

      (a) Wang, R.; Zheng, Z.; Jin, T.; Staples, R. J. Coordination chemistry of lanthanides at "high" pH: synthesis and structure of the pentadecanuclear complex of europium(III) with tyrosine. Angew. Chem. Int. Ed. 1999, 38, 1813–1815. (b) Zheng, Z. Ligand-controlled self-assembly of polynuclear lanthanide-oxo/hydroxo complexes: from synthetic serendipity to rational supramolecular design. Chem. Commun. 2001, 2521–2529.

    15. [15]

      (a) Wang, R.; Liu, H.; Carducci, M. D.; Jin, T.; Zheng, C.; Zheng, Z. Lanthanide coordination with α-amino acids under near physiological pH conditions: polymetallic complexes containing the cubane-like [Ln4(μ3-OH)4]8+ cluster core. Inorg. Chem. 2001, 40, 2743-2750. (b) Wang, R.; Selby, H. D.; Liu, H.; Carducci, M. D.; Jin, T.; Zheng, Z.; Anthis, J. W.; Staples. R. J. Halide-templated assembly of polynuclear lanthanide-hydroxo complexes. Inorg. Chem. 2002, 41, 278–286.

    16. [16]

      Zheng, X.; Jiang, Y.; Zhuang, G.; Liu, D.; Liao, H.; Kong, X.; Long, L.; Zheng, L. A gigantic molecular wheel of {Gd140}: a new member of the molecular wheel family. J. Am. Chem. Soc. 2017, 139, 18178-18181.  doi: 10.1021/jacs.7b11112

    17. [17]

      Liu, Q.; Wang, W.; Wang, Y.; Shan, Z.; Wang, M.; Tang, J. Diversity of lanthanide(III)-organic extended frameworks with a 4, 8-disulfonyl-2, 6-naphthalenedicarboxylic acid ligand: syntheses, structures, and magnetic and luminescent properties. Inorg. Chem. 2012, 51, 2381-2392.  doi: 10.1021/ic2023727

    18. [18]

      (a) Li, X.; Sun, H.; Wu, X.; Qiu, X.; Du, M. Unique (3, 12)-connected porous lanthanide-organic frameworks based on Ln4O4 clusters: synthesis, crystal structures, luminescence, and magnetism. Inorg. Chem. 2010, 49, 1865–1871. (b) Wang, W.; Tian, H.; Zhou, Z.; Feng, Y.; Cheng, J. Two unusual chiral lanthanide-sulfate frameworks with helical tubes and channels constructed from interweaving two double-helical chains. Cryst. Growth Des. 2012, 12, 2567-2571.

    19. [19]

      Gu, X.; Jin, C.; Cheng, J. A series of lanthanide-organic frameworks constructed by Ln4(OH)4 clusters and mixed ligands. Chin. J. Struct. Chem. 2019, 38, 103-108.

    20. [20]

      (a) Sheldrick, G. M. SHELXS97, Program for Crystal Structure Solution. University of Göttingen, Göttingen, Germany 1997; (b) Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement. University of Göttingen, Göttingen, Germany 1997.

    21. [21]

      Crystal data for 1: Mr = 1648.70, orthorhombic, Pna2(1), a = 20.6484(5), b = 15.2062(5), c = 18.1476(5) Å, V = 5698.1(3) Å3, Z = 4, Dc = 1.922 cm-3, μ = 4.463 mm-1, S = 0.957, Flack parameter = –0.022(8). The final least-squares refinements converged at R1 (wR2) = 0.0337 (0.0598) and for 10362 reflections with I > 2σ(I).

    22. [22]

      Cheng, J.; Zheng, S.; Yang, G. Incorporating distinct metal clusters to construct diversity of 3D pillared-layer lanthanide-transition-metal frameworks. Inorg. Chem. 2008, 47, 4930–4935.  doi: 10.1021/ic800221j

  • 加载中
    1. [1]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    2. [2]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    3. [3]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    8. [8]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    9. [9]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    10. [10]

      Yu ZhouLin-Tao JiangXiao-Ming JiangBin-Wen LiuGuo-Cong Guo . Mixed-anion square-pyramid [SbS3I2] units causing strong second-harmonic generation intensity and large birefringence. Chinese Chemical Letters, 2025, 36(4): 109740-. doi: 10.1016/j.cclet.2024.109740

    11. [11]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    12. [12]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    13. [13]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    14. [14]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    15. [15]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    16. [16]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    17. [17]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    20. [20]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

Metrics
  • PDF Downloads(2)
  • Abstract views(313)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return