Citation: Wei-Sheng LIN, Wen-Tong CHEN. Magnetic, Photoluminescent and Semiconductive Properties of a Novel 4f-5d Bromide Compound (La6Hg5Br26)[4(HgBr2)](2Br)[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 154-163. doi: 10.14102/j.cnki.0254-5861.2011-2371 shu

Magnetic, Photoluminescent and Semiconductive Properties of a Novel 4f-5d Bromide Compound (La6Hg5Br26)[4(HgBr2)](2Br)

  • Corresponding author: Wen-Tong CHEN, wtchen_2000@aliyun.com
  • Received Date: 18 March 2019
    Accepted Date: 23 May 2019

    Fund Project: the NNSFC 21361013NSF of Fujian Province 2018J01447Jiangxi Provincial Department of Education's Item of Science and Technology GJJ170637the open foundation of State Key Laboratory of Structural Chemistry 20180008

Figures(8)

  • An unprecedented 4f-5d material (La6Hg5Br26)[4(HgBr2)](2Br) (1) was syn-thesized by hydrothermal reactions and structurally characterized by single-crystal X-ray diffraction method. Complex 1 crystallizes in the Pbam space group of orthorhombic system with a = 13.0980(10), b = 13.6650(9), c = 28.010(2) Å, V = 5013.4(6) Å3, Br36Hg9La6, Mr = 5515.53, Z = 2, Dc = 3.613 g/cm3, μ(Mo) = 29.457 mm–1 and F(000) = 4598. Compound 1 is characteristic of a two-dimensional (2D) layered structure. The photoluminescent measurements with solid-state samples reveal that compound 1 has a strong emission in the green region of light spectrum. It has remarkable CIE chromaticity coordinates of (0.2499, 0.3589). A wide optical band gap of 3.41 eV is discovered by the solid-state UV/vis diffuse reflectance spectrum. The variable-temperature magnetic susceptibility obeys the Curie-Weiss law (χm = c/(Tθ)) with C = 2.48 K and a negative Weiss constant θ = –169.07 K as revealed by the magnetic measurements, indicating the existence of an antiferromagnetic interaction in compound 1.
  • 加载中
    1. [1]

      Han, S.; Deng, R.; Xie, X.; Liu, X. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. Int. Edit. 2014, 53, 11702–11715.  doi: 10.1002/anie.201403408

    2. [2]

      Zhou, B.; Tao, L.; Chai, Y.; Lau, S. P.; Zhang, Q.; Tsang, Y. H. Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure. Angew. Chem. Int. Edit. 2016, 55, 12356–12360.  doi: 10.1002/anie.201604682

    3. [3]

      Mendes, R. F.; Ananias, D.; Carlos, L. D.; Rocha, J.; Paz, F. A. A. Photoluminescent lanthanide-organic framework based on a tetraphosphonic acid linker. Cryst. Growth Des. 2017, 17, 5191–5199.  doi: 10.1021/acs.cgd.7b00667

    4. [4]

      Zhang, P.; Zhang, L.; Wang, C.; Xue, S.; Lin, S. Y.; Tang, J. Equatorially coordinated lanthanide single ion magnets. J. Am. Chem. Soc. 2014, 136, 4484–4487.  doi: 10.1021/ja500793x

    5. [5]

      Pointillart, F.; Cador, O.; Le Guennic, B.; Ouahab, L. Uncommon lanthanide ions in purely 4f single molecule magnets. Coord. Chem. Rev. 2017, 346, 150–175.  doi: 10.1016/j.ccr.2016.12.017

    6. [6]

      Kitchen, J. A. Lanthanide-based self-assemblies of 2, 6-pyridyldicarboxamide ligands: recent advances and applications as next-generation luminescent and magnetic materials. Coord. Chem. Rev. 2017, 340, 232–246.  doi: 10.1016/j.ccr.2017.01.012

    7. [7]

      Shkrob, I. A.; Kaminski, M. D.; Mertz, C. J.; Rickert, P. G.; Derzon, M. S.; Rahimian, K. Sequestration, fluorometric detection, and mass spectroscopy analysis of lanthanide ions using surface modified magnetic microspheres for microfluidic manipulation. J. Am. Chem. Soc. 2009, 131, 15705–15710.  doi: 10.1021/ja9035253

    8. [8]

      Abbas, G.; Lan, Y.; Kostakis, G.; Anson, C. E.; Powell, A. K. An investigation into lanthanide-​lanthanide magnetic interactions in a series of [Ln2(mdeaH2)​2(piv)​6] dimers. Inorg. Chim. Acta 2008, 361, 3494–3499.  doi: 10.1016/j.ica.2008.03.024

    9. [9]

      Kirste, A.; Kolmakova, N. P.; Hansel, S.; Mueller, H. U.; Von Ortenberg, M. Rare-​earth zircons and intermetallic compounds in megagauss-​fields. Investigation of new magnetic phenomena. Physica B 2004, 346-347, 191–195.  doi: 10.1016/j.physb.2004.01.048

    10. [10]

      Ofer, O.; Sugiyama, J.; Brewer, J. H.; Ansaldo, E. J.; Mansson, M.; Chow, K. H.; Kamazawa, K.; Doi, Y.; Hinatsu, Y. Frustration and magnetism of the zigzag chain compounds EuL2O4 (L = Yb, Lu, Gd, Eu). Phys. Rev. B 2011, 84, 054428–5.

    11. [11]

      Ahmed, N.; Nisar, J.; Kouser, R.; Nabi, A. G.; Mukhtar, S.; Saeed, Y.; Nasim, M. H. Study of electronic, magnetic and optical properties of KMS (M = Nd, Ho, Er and Lu)​: first principle calculations. Mater. Res. Express 2017, 4, 065903–8.  doi: 10.1088/2053-1591/aa75fc

    12. [12]

      Waters, J. B.; Turbervill, R. S. P.; Goicoechea, J. M. Group 12 metal complexes of N-​heterocyclic ditopic carbanionic carbenes. Organometallics 2013, 32, 5190–5200.  doi: 10.1021/om400728u

    13. [13]

      Mohapatra, B.; Verma, S. Crystal engineering with modified 2-​aminopurine and group 12 metal ions. Cryst. Growth Des. 2013, 13, 2716–2721.  doi: 10.1021/cg4006168

    14. [14]

      Yoshida, Y.; Ito, H.; Nakamura, Y.; Ishikawa, M.; Otsuka, A.; Hayama, H.; Maesato, M.; Yamochi, H.; Kishida, H.; Saito, G. BEDT-​TTF salts formed with tetrahedrally coordinated zinc(II) complex anions. Cryst. Growth Des. 2016, 16, 6613–6630.  doi: 10.1021/acs.cgd.6b01294

    15. [15]

      Zhang, L.; Lin, H.; Wu, Y.; Zhuo, S. Interfacial electron transfer of P3HT​/PDI​/ZnO nanocomposite and its application in visible-​light detection. Chem. Phys. Lett. 2016, 661, 224–227.  doi: 10.1016/j.cplett.2016.08.079

    16. [16]

      Zeng, Y.; Kelley, D. F. Excited hole photochemistry of CdSe​/CdS quantum dots. J. Phys. Chem. C 2016, 120, 17853–17862.  doi: 10.1021/acs.jpcc.6b06282

    17. [17]

      Uematsu, T.; Shimomura, E.; Torimoto, T.; Kuwabata, S. Evaluation of surface ligands on semiconductor nanoparticle surfaces using electron transfer to redox species. J. Phys. Chem. C 2016, 120, 16012–16023.  doi: 10.1021/acs.jpcc.5b12698

    18. [18]

      Kazem, N.; Hurtado, A.; Sui, F.; Ohno, S.; Zevalkink, A.; Snyder, J. G.; Kauzlarich, S. M. High temperature thermoelectric properties of the solid-solution zintl phase Eu11Cd6–xZnxSb12. Chem. Mater. 2015, 27, 4413–4421.  doi: 10.1021/acs.chemmater.5b01301

    19. [19]

      Suen, N. T.; Wang, Y.; Bobev, S. Synthesis, crystal structures, and physical properties of the new zintl phases A21Zn4Pn18 (A = Ca, Eu; Pn = As, Sb)—versatile arrangements of [ZnPn4] tetrahedra. J. Solid State Chem. 2015, 227, 204–211.  doi: 10.1016/j.jssc.2015.03.031

    20. [20]

      Dymek, M.; Rozdzynska-Kielbik, B.; Pavlyuk, V. V.; Bala, H. Electrochemical hydrogenation properties of LaNi4.6Zn0.4−xSnx alloys. J. Alloy. Compd. 2015, 644, 916–922.  doi: 10.1016/j.jallcom.2015.05.072

    21. [21]

      Ainsworth, C. M.; Wang, C. H.; Tucker, M. G.; Evans, J. S. O. Synthesis, structural characterization, and physical properties of the new transition metal oxyselenide Ce2O2ZnSe2. Inorg. Chem. 2015, 54, 1563–1571.  doi: 10.1021/ic502551n

    22. [22]

      Rigaku, CrystalClear Version 1.35. Rigaku Corporation, Japan, Tokyo 2002.

    23. [23]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.

    24. [24]

      Sabounchei, S. J.; Ahmadianpoor, M.; Hashemi, A.; Mohsenzadeh, F.; Gable, R. W. Synthesis, spectroscopic and structural characterization and antibacterial activity of new dimeric and polymeric mercury(II) complexes of phosphonium ylide. Inorg. Chim. Acta 2017, 458, 77–83.  doi: 10.1016/j.ica.2016.12.023

    25. [25]

      Vallejos, J.; Brito, I.; Cardenas, A.; Llanos, J.; Bolte, M.; Lopez-Rodriguez, M. Mercury coordination polymers with flexible ethane-​1, ​2-​diyl-​bis-​(pyridyl-​3-​carboxylate)​: synthesis, structures, thermal and luminescent properties. J. Solid State Chem. 2015, 223, 17–22.  doi: 10.1016/j.jssc.2014.03.022

    26. [26]

      Mahmoudi, G.; Khandar, A. A.; Zareba, J. K.; Bialek, M. J.; Gargari, M. S.; Abedi, M.; Barandika, G.; Van Derveer, D.; Mague, J.; Masoumi, A. The role of hydrogen bonding on supramolecular assembly of the mercury coordination compounds and final structure influenced by solvent effect. Inorg. Chim. Acta 2015, 429, 1–14.  doi: 10.1016/j.ica.2014.12.027

    27. [27]

      Holynska, M.; Clerac, R.; Rouzieres, M. Lanthanide complexes with multidentate oxime ligands as single-​molecule magnets and atmospheric carbon dioxide fixation systems. Chem. Eur. J. 2015, 21, 13321–13329.  doi: 10.1002/chem.201501824

    28. [28]

      Colmont, M.; Leclercq, B.; Mentre, O.; Roussel, P. Complex tunnel structure of new La6(Mo2O7)​(MoO4)​8: crystal growth from flux and high structural complexity. Mendeleev Commun. 2017, 27, 592–594.  doi: 10.1016/j.mencom.2017.11.018

    29. [29]

      Joos, J. J.; Poelman, D.; Smet, P. F. Energy level modeling of lanthanide materials: review and uncertainty analysis. Energy level modeling of lanthanide materials: review and uncertainty analysis. Phys. Chem. Chem. Phys. 2015, 17, 19058–19078.  doi: 10.1039/C5CP02156A

    30. [30]

      Zhang, Y.; Wei, W.; Das, G. K.; Yang, T.; Timothy, T. Engineering lanthanide-​based materials for nanomedicine. J. Photoch. Photobio. C 2014, 20, 71–96.  doi: 10.1016/j.jphotochemrev.2014.06.001

    31. [31]

      van Sark, W. G. J. H. M.; de Wild, J.; Rath, J. K.; Meijerink, A.; El Schropp, R. Upconversion in solar cells. Nanoscale Res. Lett. 2013, 8, 81/1–81/10.

    32. [32]

      Huang, F. Q.; Mitchell, K.; Ibers, J. A. New layered materials: syntheses, structures, and optical and magnetic properties of CsGdZnSe3, CsZrCuSe3, CsUCuSe3, and BaGdCuSe3. Inorg. Chem. 2001, 40, 5123–5126.  doi: 10.1021/ic0104353

    33. [33]

      Dürichen, P.; Bensch, W. Synthesis, crystal structures and optical properties of new quaternary chalcogenides of Va-metals: Rb2CuVS4, K2CuVSe4, Rb2CuNbSe4, Cs2CuNbSe4 and Rb2CuNbS4. Eur. J. Solid State Inorg. Chem. 1997, 34, 1187–1198.

    34. [34]

      Tillinski, R.; Rumpf, C.; Näther, C.; Duerichen, P.; Jess, I.; Schunk, S. A.; Bensch, W. Synthesis, crystal structures, and optical properties of new quaternary metal chalcogenides of group 5. Cs2AgVS4, K2AgVSe4, Rb2AgVSe4, Rb2AgNbS4, and Cs2AgNbSe4. Z. Anorg. Allg. Chem. 1998, 624, 1285–1290.  doi: 10.1002/(SICI)1521-3749(199808)624:8<1285::AID-ZAAC1285>3.0.CO;2-5

    35. [35]

      Ali, S. S.; Li, W. J.; Javed, K.; Shi, D. W.; Riaz, S.; Liu, Y.; Zhao, Y. G.; Zhai, G. J.; Han, X. F. Utilizing the anti-​ferromagnetic functionality of a multiferroic shell to study exchange bias in hybrid core-​shell nanostructures. Nanoscale 2015, 7, 13398–13403.  doi: 10.1039/C5NR02977E

    36. [36]

      Yoshida, K.; Okubo, R.; Tanida, H.; Matsumura, T.; Sera, M.; Nishioka, T.; Matsumura, M.; Moriyoshi, C.; Kuroiwa, Y. Pr- and La-​doping effects on the magnetic anisotropy in the antiferromagnetic phase of Kondo semiconductor CeRu2Al10. Phys. Rev. B 2015, 91, 235124–13.  doi: 10.1103/PhysRevB.91.235124

  • 加载中
    1. [1]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    2. [2]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    3. [3]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    4. [4]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    5. [5]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    6. [6]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    7. [7]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    11. [11]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    12. [12]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    13. [13]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    14. [14]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    15. [15]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    16. [16]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    17. [17]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    18. [18]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    19. [19]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    20. [20]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

Metrics
  • PDF Downloads(1)
  • Abstract views(311)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return