Citation: Min ZHANG, Jiang-Hua SUN, Wei-Lin SUN, Xu-Feng NI. Synthesis and Characterization of Dinuclear Rare Earth Complexes Bearing N-heterocyclic Olefin Moieties[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 79-85. doi: 10.14102/j.cnki.0254-5861.2011-2367 shu

Synthesis and Characterization of Dinuclear Rare Earth Complexes Bearing N-heterocyclic Olefin Moieties

  • Corresponding author: Xu-Feng NI, xufengni@zju.edu.cn
  • Received Date: 13 March 2019
    Accepted Date: 10 May 2019

Figures(3)

  • The oxygen-bridged dinuclear rare earth complexes (Ln = Nd (1), Y (2)) bearing N-heterocyclic olefin moieties were synthesized by treating the imidazolidinium salt [SIMes-H]Br with potassium amide and rare earth bis(trimethylsilyl)amides. Complex 1 was characterized by X-ray diffraction analysis and complex 2 was characterized by 1H NMR spectroscopy. Both complexes were characterized by elemental analysis. Crystal data of complex 1: C74H138O2N8Si8Nd2, Mr = 1685.12, orthorhombic, space group Pbca, a = 25.1105(7), b = 11.9188(2), c = 29.6151(7) Å, V = 8863.4(4) Å3, Z = 4, Dc = 1.263 g·cm-3, μ = 1.311 mm-1, F(000) = 3544, the final R = 0.0418 and wR = 0.0770 for all data. The ring-opening of tetrahydrofuran molecule was proven, the possible mechanism for the formation of N-heterocyclic olefin (NHO)-rare earth complexes was speculated and the electronic and steric properties of SIMes and rare earth amides were discussed. This work provides a better understanding of N-heterocyclic carbene rare earth chemistry.
  • 加载中
    1. [1]

      Herrmann, W. A. N-heterocyclic carbenes: a new concept in organometallic catalysis. Angew. Chem. 2010, 41, 1290–1309.

    2. [2]

      Arnold, P. L.; Casely, I. J. F-block N-heterocyclic carbene complexes. Chem. Rev. 2009, 109, 3599–3611.  doi: 10.1021/cr8005203

    3. [3]

      Liu, J.; Huo, R.; Wei, Q.; Zhao, Z. X.; Liu, Q. X. Synthesis and structural study of a N-heterocyclic carbene trinuclear silver(I) complex. Chin. J. Struct. Chem. 2016, 35, 313–318.

    4. [4]

      Cazin, C. S. J. N-heterocyclic carbenes in transition metal catalysis and organocatalysis, catalysis by metal complexes 32, Springer: Dordrecht, The Netherlands 2011, 19–20.

    5. [5]

      Yuan, W. G.; Tang, W.; Zhang, H. L.; Zhao, B.; Xiong, F.; Jing, L. H.; Qin, D. B. Two amine-tethered imidazolium NHC Ni(II) complexes: synthesis, structure and catalytic activity. Chin. J. Struc. Chem. 2014, 33, 325–332.

    6. [6]

      Trampert, J.; Nagel, M.; Grimm, T.; Sun, Y.; Thiel, W. R. Phosphine functionalized NHC ligands and their cyclopentadienide nickel(II) complexes. Z. Anorg. Allg. Chem. 2018, 644, 963–972.  doi: 10.1002/zaac.201800151

    7. [7]

      Clavier, H.; Nolan, S. P. Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. Chem. Commun. 2010, 46, 841–861.  doi: 10.1039/b922984a

    8. [8]

      Dorta, R.; Stevens, E. D.; Scott, N. M.; Costabile, C.; Cavallo, L.; Hoff, C. D.; Nolan, S. P. Steric and electronic properties of N-heterocyclic carbenes (NHC):   a detailed study on their interaction with Ni(CO)4. J. Am. Chem. Soc. 2005, 127, 2485–2495.  doi: 10.1021/ja0438821

    9. [9]

      Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano, V.; Cavallo, L. SambVca: a web application for the calculation of the buried volume of N-heterocyclic carbene ligands. Eur. J. Inorg. Chem. 2009, 2009, 1759–1766.  doi: 10.1002/ejic.200801160

    10. [10]

      Cavallo, L.; Correa, A.; Costabile, C.; Jacobsen, H. Steric and electronic effects in the bonding of N-heterocyclic ligands to transition metals. J. Organomet. Chem. 2005, 690, 5407–5413.  doi: 10.1016/j.jorganchem.2005.07.012

    11. [11]

      Hillier, A. C.; Sommer, W. J.; Yong, B. S.; Petersen, J. L.; Cavallo, L.; Nolan, S. P. A combined experimental and theoretical study examining the binding of N-heterocyclic carbenes (NHC) to the Cp*RuCl (Cp* = η5-C5Me5) moiety:  insight into stereoelectronic differences between unsaturated and saturated NHC ligands. Organometallics 2003, 22, 4322–4326.  doi: 10.1021/om034016k

    12. [12]

      Yuan, J.; Hu, H.; Cui, C. N-Heterocyclic carbene-ytterbium amide as a recyclable homogeneous precatalyst for hydrophosphination of alkenes and alkynes. Chem. Eur. J. 2016, 22, 5778–5785.  doi: 10.1002/chem.201600512

    13. [13]

      Leuthäußer, S.; Schwarz, D.; Plenio, H. Tuning the electronic properties of N-heterocyclic carbenes. Chem. Eur. J. 2007, 13, 7195–7203.  doi: 10.1002/chem.200700228

    14. [14]

      Fegler, W.; Spaniol, T. P.; Okuda, J. Trimethylsilylmethyl complexes of the rare-earth metals with sterically hindered N-heterocyclic carbene ligands: adduct formation and C–H bond activation. Dalton Trans. 2010, 39, 6774–6779.  doi: 10.1039/c001699c

    15. [15]

      Fegler, W.; Saito, T.; Mashima, K.; Spaniol, T. P.; Okuda, J. C–H bond activation of N-heterocyclic carbene IMes by rare-earth metal alkyl complexes. J. Organomet. Chem. 2010, 695, 2794–2797.  doi: 10.1016/j.jorganchem.2010.08.021

    16. [16]

      Pan, Y.; Xu, T.; Ge, Y. S.; Lu, X. B. N-heterocyclic carbene scandium complexes: synthesis, structure, and catalytic performance for α-olefin polymerization and copolymerization with 1, 5-hexadiene. Organometallics 2011, 30, 5687–5694.  doi: 10.1021/om200550j

    17. [17]

      Roche, S. P.; Teyssot, M. L.; Gautier, A. Synthesis of 1, 2 diamines under environmentally benign conditions: application for the preparation of imidazolidiniums. Tetra. Lett. 2010, 51, 1265–1268.  doi: 10.1016/j.tetlet.2009.12.072

    18. [18]

      Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112-122.

    19. [19]

      Bradley, D. C.; Ghotra, J. S.; Hart, F. A. Low coordination numbers in lanthanide and actinide compounds. Part I. The preparation and characterization of tris{bis(trimethylsilyl)-amido}lanthanides. J. Am. Chem. Soc., Dalton Trans. 1973, 1021–1023.

    20. [20]

      Zhang, M.; Liang, Z.; Ling, J.; Ni, X.; Shen, Z. Carbon bridged triphenolate lanthanide complexes: synthesis, characterization, DFT studies and catalytic activities for isoprene polymerization. Dalton Trans. 2015, 44, 11182–11190.  doi: 10.1039/C5DT01241D

    21. [21]

      Mcmurry, J. Fundamentals of Organic Chemistry, 7th ed. Brooks/Cole, Belmont, CA 2010, 156.

    22. [22]

      Zhang, M.; Ni, X.; Shen, Z. Synthesis of bimetallic bis(phenolate) N-heterocyclic carbene lanthanide complexes and their applications in the ring-opening polymerization of l-lactide. Organometallics 2014, 33, 6861–6867.  doi: 10.1021/om500930m

    23. [23]

      Panda, T. K.; Hrib, C. G.; Jones, P. G.; Tamm, M. Synthesis and characterization of homoleptic imidazolin-2-iminato rare earth metal complexes. J. Organomet. Chem. 2010, 695, 2768–2773.  doi: 10.1016/j.jorganchem.2010.06.028

    24. [24]

      Li, Y. G.; Han, L.; Ma, G.; Zhu, C. F. Synthesis, structure and property of one bis(benzimidazolin-2-ylidene) arene-mercury(II) complex. Chin. J. Struc. Chem. 2014, 33, 1610–1616.

    25. [25]

      Zhou, L.; Yao, Y.; Shen, Q. Lanthanide(II) amide complexes: efficient initiators for the living polymerization of methyl methacrylate. J. Appl. Poly. Sci. 2009, 114, 2403–2409.  doi: 10.1002/app.30656

    26. [26]

      Wang, B.; Cui, D.; Lv, K. Highly 3, 4-selective living polymerization of isoprene with rare earth metal fluorenyl N-heterocyclic carbene precursors. Macromolecules 2008, 41, 1983–1988.  doi: 10.1021/ma702505n

    27. [27]

      Aihara, H.; Matsuo, T.; Kawaguchi, H. Titanium N-heterocyclic carbene complexes incorporating an imidazolium-linked bis(phenol). Chem. Commun. 2003, 2204–2205.

    28. [28]

      Zhang, D.; Aihara, H.; Watanabe, T.; Matsuo, T.; Kawaguchi, H. Zirconium complexes of the tridentate bis(aryloxide)-N-heterocyclic-carbene ligand: chloride and alkyl functionalized derivatives. J. Organomet. Chem. 2007, 692, 234–242.  doi: 10.1016/j.jorganchem.2006.03.044

    29. [29]

      Romain, C.; Brelot, L.; Bellemin-Laponnaz, S.; Dagorne, S. Synthesis and structural characterization of a novel family of titanium complexes bearing a tridentate bis-phenolate-N-heterocyclic carbene dianionic ligand and their use in the controlled ROP of rac-lactide. Organometallics 2010, 29, 1191–1198.  doi: 10.1021/om901084n

    30. [30]

      Zhang, M.; Zhang, J.; Ni, X.; Shen, Z. Bis(phenolate) N-heterocyclic carbene rare earth metal complexes: synthesis, characterization and applications in the polymerization of n-hexyl isocyanate. RSC Adv. 2015, 5, 83295–83303.  doi: 10.1039/C5RA16447H

    31. [31]

      Zhang, J.; Zhang, M.; Bai, T.; Ni, X.; Shen, Z. Synthesis and characterization of heterobimetallic organo rare earth complexes bearing aryloxide-N-heterocyclic carbene ligands. J. Organomet. Chem. 2017, 843, 1–6.  doi: 10.1016/j.jorganchem.2017.04.039

  • 加载中
    1. [1]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    4. [4]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    5. [5]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    6. [6]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    7. [7]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    8. [8]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    9. [9]

      Xue-Jiao WangJun-Li XinHong XiangZe-Yu ZhaoYu-Hang HeHaibo WangGuangyao MeiYi-Cheng MaoJuan XiongJin-Feng Hu . Holotrichones A and B, potent anti-leukemic lindenane-type sesquiterpene trimers with unprecedented complex carbon skeletons from a rare Chloranthus species. Chinese Chemical Letters, 2024, 35(12): 109682-. doi: 10.1016/j.cclet.2024.109682

    10. [10]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    11. [11]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    12. [12]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    13. [13]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    14. [14]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    15. [15]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    16. [16]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    17. [17]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    18. [18]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    19. [19]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    20. [20]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

Metrics
  • PDF Downloads(3)
  • Abstract views(328)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return