Citation: Azeem Muhammad, Hong ZHANG, Li-Jun JI, Li-Yuan DONG, Pei-Xiang LU, Wei LI. Synthesis, Structure and Elastic Properties of a New Hybrid Perovskite Material: [C6H14N2]KBr3[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 174-181. doi: 10.14102/j.cnki.0254-5861.2011-2366 shu

Synthesis, Structure and Elastic Properties of a New Hybrid Perovskite Material: [C6H14N2]KBr3

  • Corresponding author: Wei LI, wl276@nankai.edu.cn
  • Muhammad Azeem and Zhang Hong contributed equally in this work.
  • Received Date: 11 March 2019
    Accepted Date: 21 October 2019

    Fund Project: the National Natural Science Foundation of China 21571072

Figures(4)

  • A new hybrid organic-inorganic perovskite (HOIP) material, [C6H14N2]KBr3, has been synthesized via hydrothermal method and fully characterized. [C6H14N2]KBr3 has a three-dimensional perovskite structure and crystalizes in a trigonal P3121 space group. The elastic properties of [C6H14N2]KBr3 were fully calculated via the density functional theory calculations, which reveal the elastic moduli (11.54~14.07 GPa), shear moduli (4.56~5.68 GPa), Poisson's ratios (0.18~0.32), bulk modulus (8.51 GPa) and acoustic velocity (2.57~2.74 kms-1). Additional nanoindentation experiments in the form of single-crystals confirmed the validity of our theoretical approach. [C6H14N2]KBr3 exhibits higher stiffness and thermal stability than the well-known photovoltaic CH3NH3PbI3, which makes it worthwhile for exploring optoelectronic properties.
  • 加载中
    1. [1]

      Li, W.; Wang, Z.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nat. Rev. Mater. 2017, 2, 1-18.

    2. [2]

      Wei, W.; Li, W.; Butler, K. T.; Feng, G.; Howard, C. J.; Carpenter, M. A.; Lu, P.; Walsh, A.; Cheetham, A. K. An unusual phase transition driven by vibrational entropy changes in a hybrid organic-inorganic perovskite. Angew. Chem. Int. Ed. 2018, 57, 8932–8936.  doi: 10.1002/anie.201803176

    3. [3]

      Szafrański, M.; Wei, W. J.; Wang, Z. M.; Li, W.; Katrusiak, A. Research update: tricritical point and large caloric effect in a hybrid organic-inorganic perovskite. APL Mater. 2018, 6, 1-10.

    4. [4]

      Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402.  doi: 10.1038/nnano.2015.90

    5. [5]

      Zhou, B.; Imai, Y.; Kobayashi, A.; Wang, Z. M.; Kobayashi, H. Giant dielectric anomaly of a metal-organic perovskite with four-membered ring ammonium cations. Angew. Chem. Int. Ed. 2011, 50, 11441–11445.  doi: 10.1002/anie.201105111

    6. [6]

      Wang, X. Y.; Wang, Z. M.; Gao, S. Constructing magnetic molecular solids by employing three-atom ligands as bridges. Chem. Commun. 2008, 0, 281–294.

    7. [7]

      Hang, T.; Zhang, W.; Ye, H. Y.; Xiong, R. G. Metal-organic complex ferroelectrics. Chem. Soc. Rev. 2011, 40, 3577–3598.  doi: 10.1039/c0cs00226g

    8. [8]

      Li, W.; Zhang, Z.; Bithell, E. G.; Batsanov, A. S.; Barton, P. T.; Saines, P. J.; Jain, P.; Howard, C. J.; Carpenter, M. A.; Cheetham, A. K. Ferroelasticity in a metal-organic framework perovskite; towards a new class of multiferroics. Acta Mater. 2013, 61, 4928–4938.  doi: 10.1016/j.actamat.2013.04.054

    9. [9]

      Fu, D. W.; Zhang, W.; Cai, H. L.; Zhang, Y.; Ge, J. Z.; Xiong, R. G.; Huang, S. D.; Nakamura, T. A multiferroic perdeutero metal-organic framework. Angew. Chem. Int. Ed. 2011, 50, 11947–11951.

    10. [10]

      Saparov, B.; Mitzi, D. B. Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 2016, 116, 4558–4596.  doi: 10.1021/acs.chemrev.5b00715

    11. [11]

      Shanmuga Priya, S.; Rao, A.; Thirunavukkarasu, I.; Nayak, V. Solar pebble bed reactor for treatment of textile and petrochemical industrial wastewater. Int. J. Chem Tech. Res. 2016, 9, 261–270.

    12. [12]

      Weber, D. CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z. Naturforsch. B 1978, 33, 1443–1445.  doi: 10.1515/znb-1978-1214

    13. [13]

      Paton, L. A.; Harrison, W. T. A. Structural diversity in non-layered hybrid perovskites of the RMCl3 family. Angew. Chem. Int. Ed. 2010, 49, 7684–7687.  doi: 10.1002/anie.201003541

    14. [14]

      Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8.  doi: 10.1107/S2053273314026370

    15. [15]

      Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. ‎Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.  doi: 10.1524/zkri.220.5.567.65075

    16. [16]

      Steinke, T. Tools for parallel quantum chemistry software. Mods. Meth. Algor. Quan. Chem. 2000, 3, 67–96.

    17. [17]

      Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569.  doi: 10.1103/PhysRevLett.45.566

    18. [18]

      Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized Pseudopotentials. Phys. Rev. B 1990, 41, 1227–1230.  doi: 10.1103/PhysRevB.41.1227

    19. [19]

      Zhang, X.; Liu, X.; Liang, G.; Li, R.; Xu, H.; Yan, B. Theoretical study on the low-lying excited states of the phosphorus monoiodide (PI) including the spin-orbit coupling. J. Quant. Spectrosc. Radiat. Transf. 2016, 168, 66–77.  doi: 10.1016/j.jqsrt.2015.09.006

    20. [20]

      Qu, X. L.; Gui, D.; Zheng, X. L.; Li, R.; Han, H. L.; Li, X.; Li, P. Z. A Cd(II)-based metal-organic framework as a luminance sensor to nitrobenzene and Tb(III) ion. Dalton Trans. 2016, 45, 6983–6989.  doi: 10.1039/C6DT00162A

    21. [21]

      Ramamurty, U.; Jang, J. I. Nanoindentation for probing the mechanical behavior of molecular crystals-a review of the technique and how to use it. CrystEngCom. 2014, 16, 12–23.  doi: 10.1039/C3CE41266K

    22. [22]

      Zhang, Z.; Jiang, X.; Feng, G.; Lin, Z.; Hu, B.; Li, W. Mechanical properties and negative thermal expansion of a dense rare earth formate framework. J. Solid State Chem. 2016, 233, 289–293.  doi: 10.1016/j.jssc.2015.10.043

    23. [23]

      Kieslich, G.; Sun, S.; Cheetham, A. K. An extended tolerance factor approach for organic-inorganic perovskites. Chem. Sci. 2015, 6, 3430–3433.  doi: 10.1039/C5SC00961H

    24. [24]

      Ji, L. J.; Qin, Y.; Gui, D.; Li, W.; Li, Y.; Li, X.; Lu, P. Quantifying the exfoliation ease level of 2D materials via mechanical anisotropy. Chem. Mater. 2018, 30, 8732–8738.

    25. [25]

      Feng, G.; Gui, D.; Li, W. Structural and chemical bonding dependence of mechanical properties in a family of metal-formate coordination polymers. Cryst. Growth Des. 2018, 18, 4890–4895.

    26. [26]

      Feng, G.; Zhang, W. X.; Dong, L.; Li, W.; Cai, W.; Wei, W.; Ji, L. J.; Lin, Z.; Lu, P. Negative area compressibility of a hydrogen-bonded two-dimensional material. Chem. Sci. 2019, 10, 1309–1315.

    27. [27]

      Gui, D.; Ji, L. J.; Muhammad, A.; Li, W.; Cai, W.; Li, Y.; Li, X.; Wu, X.; Lu, P. Jahn-Teller effect on framework flexibility of hybrid organic-inorganic perovskites. J. Phys. Chem. Lett. 2018, 9, 751–755.

    28. [28]

      Dong, L.; Sun, S.; Deng, Z.; Li, W.; Wei, F.; Qi, Y.; Li, Y.; Li, X.; Lu, P. Elastic properties and thermal expansion of lead-free halide double perovskite Cs2AgBiBr6. Comput. Mater. Sci. 2018, 141, 49–58.

    29. [29]

      Azeem, M.; Asif, M.; Gui, D.; Dong, L.; Pei, C.; Lu, P.; Li, W. Elastic and hydrostatic behaviour of a zinc dietary supplement, zinc glycinate hydrate. RSC Adv. 2019, 9, 13153–13158.

    30. [30]

      Feng, G.; Qin, Y.; Ran, C.; Ji, L. J.; Dong, L.; Li, W. Structural evolution and photoluminescence properties of a 2D hybrid perovskite under pressure. APL Mater. 2018, 6, 1–7.

    31. [31]

      Angel, R. J.; Jackson, J. M.; Reichmann, H. J.; Speziale, S. Elasticity measurements on minerals: a review. Eur. J. Mineral. 2009, 21, 525–550.

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    3. [3]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    8. [8]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    9. [9]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    10. [10]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    11. [11]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    12. [12]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    13. [13]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    14. [14]

      Hao-Fei NiJia-He LinGele TeriQiang-Qiang JiaPei-Zhi HuangHai-Feng LuChang-Feng WangZhi-Xu ZhangDa-Wei FuYi Zhang . B-site ion regulation strategy enables performance optimization and multifunctional integration of hybrid perovskite ferroelectrics. Chinese Chemical Letters, 2025, 36(3): 109690-. doi: 10.1016/j.cclet.2024.109690

    15. [15]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    16. [16]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    17. [17]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    18. [18]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    19. [19]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    20. [20]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

Metrics
  • PDF Downloads(3)
  • Abstract views(300)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return