Citation: YU You-Yi, ZHANG Heng-Qiang. Reduced Graphene Oxide Coupled Magnetic CuFe2O4-TiO2 Nanoparticles with Enhanced Photocatalytic Activity for Methylene Blue Degradation[J]. Chinese Journal of Structural Chemistry, ;2016, 35(3): 472-480. doi: 10.14102/j.cnki.0254-5861.2011-1041 shu

Reduced Graphene Oxide Coupled Magnetic CuFe2O4-TiO2 Nanoparticles with Enhanced Photocatalytic Activity for Methylene Blue Degradation

  • Corresponding author: YU You-Yi, 
  • Received Date: 4 November 2015
    Available Online: 14 December 2015

    Fund Project: Supported by the National Natural Science Function of China (No. 21303058) (No. 21303058)

  • CuFe2O4-TiO2/graphene nanocomposites have been prepared via a one-step hy-drothermal method, and the as-prepared CuFe2O4-TiO2/graphene was characterized by X-ray powder diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The transmission electron microscopy demonstrated that CuFe2O4-TiO2 nanoparticles were successfully dispersed on the graphene sheets. Photocatalytic activity of nanocomposites was evaluated in terms of degradation of methylene blue (MB) dye solution under visible light radiation. Results showed that the photocatalytic efficiency of CuFe2O4-TiO2/graphene nanocomposites was higher than its individual pure oxides (CuFe2O4 or TiO2) and TiO2/graphene. The enhancing photocatalytic activity performance of the CuFe2O4-TiO2/graphene nanocomposites may attributed to the mutual effect between the CuFe2O4, TiO2 nanoparticles and the graphene sheets. Moreover, CuFe2O4 nanoparticles have excellent magnetic property, which makes the CuFe2O4-TiO2/graphene heteroarchitecture magnetically recyclable in a suspension system.
  • 加载中
    1. [1]

      (1) Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

    2. [2]

      (2) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics. 2010, 4, 611-622.

    3. [3]

      (3) Kamat, P. V. Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Lett. 2010, 2, 242-251.

    4. [4]

      (4) Subramanian, V.; Wolf, E.; Kamat, P. V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films. J. Phys. Chem. B. 2001, 105, 11439-11446.

    5. [5]

      (5) Wang, N.; Chen, Z.; Zhu, L.; Jiang, X.; Lv, B.; Tang, H. Synergistic effects of cupric and fluoride ions on photocatalytic degradation of phenol. J. Photochem. Photobiol. A: Chem. 2007, 191, 193-200.

    6. [6]

      (6) Wang, L.; Wang, N.; Zhu, L.; Yu, H.; Tang, H. Photocatalytic reduction of Cr (VI) over different TiO2 photocatalysts and the effects of dissolved organic species. J. Hazard. Mater. 2008, 1, 93-99.

    7. [7]

      (7) Shen, X.; Zhu, L.; Li, J.; Tang, H. Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity. Chem. Commun. 2007, 11, 1163-1165.

    8. [8]

      (8) Tada, H.; Konishi, Y.; Kokubu, A. Patterned TiO2/SnO2 bilayer type photocatalyst.3. Preferential deposition of Pt particles on the SnO2 underlayer and its effect on photocatalytic activity. Langmuir. 2004, 20, 3816-3819.

    9. [9]

      (9) Li, J.; Zhu, L.; Wu, Y.; Harima, Y.; Zhang, A.; Tang, H. Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polymer. 2006, 47, 7361-7367.

    10. [10]

      (10) Rajeshwara, K.; Osugib, M. E.; Chanmaneec, W.; Chenthamarakshana, C. R.; Zanonib, M. V.; Kajitvichyanukuld, B. P.; Krishnan-Ayera, R. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C 2008, 9, 171-192.

    11. [11]

      (11) Wang. Y. F.; Li, L. P.; Huang, X. S.; Li, G. S. A new Ti3+-assisted synthesis of Pd-supported TiO2 nanomaterial with enhanced photocatalytic activity for hydrogen generation and methyl orange degradation. Chin. J. Struct. Chem. 2015, 8, 1203-1216.

    12. [12]

      (12) Xu, Z.; Quintanilla, M.; Vetrone, F.; Govorov, A. O.; Chaker, M.; Ma, D. Plasmon and upconversion enhanced broadband photocatalytic activity in core @ shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au. Adv. Funct. Mater. 2015, 25, 2950-2960.

    13. [13]

      (13) Tien, H. N.; Luan, V. H.; Hoa, L. T.; Khoa, N. T.; Hahn, S. H.; Chung, J. S.; Shin, E.W.; Hur, S. H. One-pot synthesis of a reduced graphene oxide-zinc oxide sphere composite and its use as a visible light photocatalyst. Chem. Eng. J. 2013, 229, 126-133.

    14. [14]

      (14) Jiang, J. Z.; Goya, G. F.; Rechenberg, H. R. Magnetic properties of nanostructured CuFe2O4.J. Phys. Condens. Matter. 1999, 11, 4063-4078.

    15. [15]

      (15) Zhang, G. S.; Qu, J. H.; Liu, H. J.; Cooper, A. T.; Wu, R. C. CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 2007, 68, 1058-1066.

    16. [16]

      (16) Bomio, M.; Lavela, P.; Tirado, J. L. Electrochemical evaluation of CuFe2O4 samples obtained by sol-gel methods used as anodes in lithium batteries. J. Solid State Electrochem. 2008, 12, 729-737.

    17. [17]

      (17) Sun, Z. P.; Liu, L.; Jia, D. Z.; Pan, W. Y. Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sensor. Actuat. B-Chem. 2007, 125, 144-148.

    18. [18]

      (18) Kameokaa, S.; Tanabe, T.; Tsai, A. P. Spinel CuFe2O4: a precursor for copper catalyst with high thermal stability and activity. Catal. Lett. 2005, 100, 89-93.

    19. [19]

      (19) Saadi, S.; Bouguelia, A.; Trari, M. Photoassisted hydrogen evolution over spinel CuM2O4 (M = Al, Cr, Mn, Fe and Co). Renew. Energ. 2006, 31, 2245-2256.

    20. [20]

      (20) Xu, Y.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856-5857.

    21. [21]

      (21) Yang, H.; Yan, J.; Lu, Z.; Cheng, X.; Tang, Y. Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. J. Alloy. Compd. 2009, 476, 715-719.

    22. [22]

      (22) Wang, J.; Zhu, H.; Hurren, C.; Zhao, J.; Pakdel, E.; Li, Z. Degradation of organic dyes by P25-reduced graphene oxide: influence of inorganic salts and surfactants. J. Environ. Chem. Engin. 2015, 3, 1437-1443.

    23. [23]

      (23) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.

    24. [24]

      (24) Lambert, T. N; Chavez, C. A.; Hernandez-Sanchez, B.; Lu, P.; Bell, N. S. Synthesis and characterization of titania-graphene nanocomposites. J. Phys. Chem. C 2009, 113, 19812-19823.

    25. [25]

      (25) Vasu, K. S.; Chakraborty, B.; Sampath, S.; Sood, A. K. Probing top-gated field effect transistor of reduced graphene oxide monolayer made by dielectrophoresis. Solid State Commun. 2010, 150, 1295-1298.

    26. [26]

      (26) Ray, S. C.; Saha, A.; Basiruddin, S. K.; Roy, S. S.; Jana, N. R. Polyacrylate-coated graphene-oxide and graphene solution via chemical route for various biological application. Diamond Relat. Mater. 2011, 20, 449-453.

    27. [27]

      (27) Ferrari, A. C.; Meyer, J. C.; Casiraghi, V. C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401-187405.

    28. [28]

      (28) Hernandez, Y.; Nicolosi, V.; Ltya, M. F.; Blighe, M.; Sun, Z.; De, S.; Mcgovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563-568.

    29. [29]

      (29) Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538-542.

    30. [30]

      (30) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60-63.

    31. [31]

      (31) Wang, X.; Zhi, L. J.; Mullen, K. Conductive graphene electrodes for dye-sensitized solar cells. Nano. Lett. 2008, 8, 323-327.

    32. [32]

      (32) Zhang, Y. P.; Pan, C. X. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J. Mater. Sci. 2011, 46, 2622-2626.

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    4. [4]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    5. [5]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    6. [6]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    7. [7]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    8. [8]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    9. [9]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    10. [10]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    11. [11]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    12. [12]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    13. [13]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    14. [14]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    15. [15]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    16. [16]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    17. [17]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    18. [18]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    19. [19]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    20. [20]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

Metrics
  • PDF Downloads(0)
  • Abstract views(747)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return