Citation: YU You-Yi, ZHANG Heng-Qiang. Reduced Graphene Oxide Coupled Magnetic CuFe2O4-TiO2 Nanoparticles with Enhanced Photocatalytic Activity for Methylene Blue Degradation[J]. Chinese Journal of Structural Chemistry, ;2016, 35(3): 472-480. doi: 10.14102/j.cnki.0254-5861.2011-1041 shu

Reduced Graphene Oxide Coupled Magnetic CuFe2O4-TiO2 Nanoparticles with Enhanced Photocatalytic Activity for Methylene Blue Degradation

  • Corresponding author: YU You-Yi, 
  • Received Date: 4 November 2015
    Available Online: 14 December 2015

    Fund Project: Supported by the National Natural Science Function of China (No. 21303058) (No. 21303058)

  • CuFe2O4-TiO2/graphene nanocomposites have been prepared via a one-step hy-drothermal method, and the as-prepared CuFe2O4-TiO2/graphene was characterized by X-ray powder diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The transmission electron microscopy demonstrated that CuFe2O4-TiO2 nanoparticles were successfully dispersed on the graphene sheets. Photocatalytic activity of nanocomposites was evaluated in terms of degradation of methylene blue (MB) dye solution under visible light radiation. Results showed that the photocatalytic efficiency of CuFe2O4-TiO2/graphene nanocomposites was higher than its individual pure oxides (CuFe2O4 or TiO2) and TiO2/graphene. The enhancing photocatalytic activity performance of the CuFe2O4-TiO2/graphene nanocomposites may attributed to the mutual effect between the CuFe2O4, TiO2 nanoparticles and the graphene sheets. Moreover, CuFe2O4 nanoparticles have excellent magnetic property, which makes the CuFe2O4-TiO2/graphene heteroarchitecture magnetically recyclable in a suspension system.
  • 加载中
    1. [1]

      (1) Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

    2. [2]

      (2) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics. 2010, 4, 611-622.

    3. [3]

      (3) Kamat, P. V. Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Lett. 2010, 2, 242-251.

    4. [4]

      (4) Subramanian, V.; Wolf, E.; Kamat, P. V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films. J. Phys. Chem. B. 2001, 105, 11439-11446.

    5. [5]

      (5) Wang, N.; Chen, Z.; Zhu, L.; Jiang, X.; Lv, B.; Tang, H. Synergistic effects of cupric and fluoride ions on photocatalytic degradation of phenol. J. Photochem. Photobiol. A: Chem. 2007, 191, 193-200.

    6. [6]

      (6) Wang, L.; Wang, N.; Zhu, L.; Yu, H.; Tang, H. Photocatalytic reduction of Cr (VI) over different TiO2 photocatalysts and the effects of dissolved organic species. J. Hazard. Mater. 2008, 1, 93-99.

    7. [7]

      (7) Shen, X.; Zhu, L.; Li, J.; Tang, H. Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity. Chem. Commun. 2007, 11, 1163-1165.

    8. [8]

      (8) Tada, H.; Konishi, Y.; Kokubu, A. Patterned TiO2/SnO2 bilayer type photocatalyst.3. Preferential deposition of Pt particles on the SnO2 underlayer and its effect on photocatalytic activity. Langmuir. 2004, 20, 3816-3819.

    9. [9]

      (9) Li, J.; Zhu, L.; Wu, Y.; Harima, Y.; Zhang, A.; Tang, H. Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polymer. 2006, 47, 7361-7367.

    10. [10]

      (10) Rajeshwara, K.; Osugib, M. E.; Chanmaneec, W.; Chenthamarakshana, C. R.; Zanonib, M. V.; Kajitvichyanukuld, B. P.; Krishnan-Ayera, R. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C 2008, 9, 171-192.

    11. [11]

      (11) Wang. Y. F.; Li, L. P.; Huang, X. S.; Li, G. S. A new Ti3+-assisted synthesis of Pd-supported TiO2 nanomaterial with enhanced photocatalytic activity for hydrogen generation and methyl orange degradation. Chin. J. Struct. Chem. 2015, 8, 1203-1216.

    12. [12]

      (12) Xu, Z.; Quintanilla, M.; Vetrone, F.; Govorov, A. O.; Chaker, M.; Ma, D. Plasmon and upconversion enhanced broadband photocatalytic activity in core @ shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au. Adv. Funct. Mater. 2015, 25, 2950-2960.

    13. [13]

      (13) Tien, H. N.; Luan, V. H.; Hoa, L. T.; Khoa, N. T.; Hahn, S. H.; Chung, J. S.; Shin, E.W.; Hur, S. H. One-pot synthesis of a reduced graphene oxide-zinc oxide sphere composite and its use as a visible light photocatalyst. Chem. Eng. J. 2013, 229, 126-133.

    14. [14]

      (14) Jiang, J. Z.; Goya, G. F.; Rechenberg, H. R. Magnetic properties of nanostructured CuFe2O4.J. Phys. Condens. Matter. 1999, 11, 4063-4078.

    15. [15]

      (15) Zhang, G. S.; Qu, J. H.; Liu, H. J.; Cooper, A. T.; Wu, R. C. CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 2007, 68, 1058-1066.

    16. [16]

      (16) Bomio, M.; Lavela, P.; Tirado, J. L. Electrochemical evaluation of CuFe2O4 samples obtained by sol-gel methods used as anodes in lithium batteries. J. Solid State Electrochem. 2008, 12, 729-737.

    17. [17]

      (17) Sun, Z. P.; Liu, L.; Jia, D. Z.; Pan, W. Y. Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sensor. Actuat. B-Chem. 2007, 125, 144-148.

    18. [18]

      (18) Kameokaa, S.; Tanabe, T.; Tsai, A. P. Spinel CuFe2O4: a precursor for copper catalyst with high thermal stability and activity. Catal. Lett. 2005, 100, 89-93.

    19. [19]

      (19) Saadi, S.; Bouguelia, A.; Trari, M. Photoassisted hydrogen evolution over spinel CuM2O4 (M = Al, Cr, Mn, Fe and Co). Renew. Energ. 2006, 31, 2245-2256.

    20. [20]

      (20) Xu, Y.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856-5857.

    21. [21]

      (21) Yang, H.; Yan, J.; Lu, Z.; Cheng, X.; Tang, Y. Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. J. Alloy. Compd. 2009, 476, 715-719.

    22. [22]

      (22) Wang, J.; Zhu, H.; Hurren, C.; Zhao, J.; Pakdel, E.; Li, Z. Degradation of organic dyes by P25-reduced graphene oxide: influence of inorganic salts and surfactants. J. Environ. Chem. Engin. 2015, 3, 1437-1443.

    23. [23]

      (23) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.

    24. [24]

      (24) Lambert, T. N; Chavez, C. A.; Hernandez-Sanchez, B.; Lu, P.; Bell, N. S. Synthesis and characterization of titania-graphene nanocomposites. J. Phys. Chem. C 2009, 113, 19812-19823.

    25. [25]

      (25) Vasu, K. S.; Chakraborty, B.; Sampath, S.; Sood, A. K. Probing top-gated field effect transistor of reduced graphene oxide monolayer made by dielectrophoresis. Solid State Commun. 2010, 150, 1295-1298.

    26. [26]

      (26) Ray, S. C.; Saha, A.; Basiruddin, S. K.; Roy, S. S.; Jana, N. R. Polyacrylate-coated graphene-oxide and graphene solution via chemical route for various biological application. Diamond Relat. Mater. 2011, 20, 449-453.

    27. [27]

      (27) Ferrari, A. C.; Meyer, J. C.; Casiraghi, V. C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401-187405.

    28. [28]

      (28) Hernandez, Y.; Nicolosi, V.; Ltya, M. F.; Blighe, M.; Sun, Z.; De, S.; Mcgovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563-568.

    29. [29]

      (29) Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538-542.

    30. [30]

      (30) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60-63.

    31. [31]

      (31) Wang, X.; Zhi, L. J.; Mullen, K. Conductive graphene electrodes for dye-sensitized solar cells. Nano. Lett. 2008, 8, 323-327.

    32. [32]

      (32) Zhang, Y. P.; Pan, C. X. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J. Mater. Sci. 2011, 46, 2622-2626.

  • 加载中
    1. [1]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    6. [6]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    7. [7]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    8. [8]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    9. [9]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    10. [10]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    11. [11]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    12. [12]

      Sushu Zhang Yang Yang Jingyu Wang . Pyridinic nitrogen-substituted graphene membranes for exceptional CO2 capture. Chinese Journal of Structural Chemistry, 2025, 44(2): 100440-100440. doi: 10.1016/j.cjsc.2024.100440

    13. [13]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    14. [14]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    15. [15]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    16. [16]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    17. [17]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    18. [18]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    19. [19]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    20. [20]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

Metrics
  • PDF Downloads(0)
  • Abstract views(859)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return