Citation: XU Fen-Fena, FENG Ya-Nan, DU Shao-Wu, CHEN Yi-Feng. A New Pyridine-substituted Azadithiolate 2Fe2S Complex Related to the Active Site of [FeFe]-hydrogenase[J]. Chinese Journal of Structural Chemistry, ;2016, 35(2): 237-245. doi: 10.14102/j.cnki.0254-5861.2011-0995 shu

A New Pyridine-substituted Azadithiolate 2Fe2S Complex Related to the Active Site of [FeFe]-hydrogenase

  • Corresponding author: DU Shao-Wu, 
  • Received Date: 21 May 2015
    Available Online: 10 December 2015

    Fund Project: This project was supported by the National Basic Research Program of China (973 Program, 2012CB821702) (973 Program, 2012CB821702)

  • A new 2Fe2S complex [(2-C5H4N)N(μ-CH2S)2Fe2(CO)6] (1) related to the active site of [FeFe]-hydrogenase was obtained by treating (HS)2Fe2(CO)6 with (pyridin-2-ylazanediyl) dimethanol. Protonation occurred at the pyridine nitrogen atom when two equivalents of HBF4·OEt2 acid were added to the toluene solution of 1, leading to the formation of [(2-C5H4NH)N(μ- CH2S)2Fe2(CO)6]·BF4·OEt2 (1H+), whose molecular structure was further established by single- crystal X-ray analysis. Complex 1 crystallizes in the monoclinic system, space group P21/n with a = 7.728(3), b = 11.825(4), c = 17.888(6) Å, β = 92.968(5)°, while complex 1H+ crystallizes in the triclinic system, space group P1 with a = 7.672(4), b = 10.382(5), c = 16.480(10) Å, α = 106.575(13), β = 93.18(3), γ = 104.262(17)°.
  • 加载中
    1. [1]

      (1) Tard, C.; Pickett, C. J. Structural and functional analogues of the active sites of the Fe-, NiFe-, and FeFe-hydrogenases. Chem. Rev. 2009, 109, 2245-2274.

    2. [2]

      (2) Mulder, D. W.; Shepard, E. M.; Meuser, J. E.; Joshi, N.; King, P. W.; Posewitz, M. C.; Broderick, J. B.; Peters, J. W. Insights into FeFe-hydrogenase structure, mechanism, and maturation. Structure 2011, 19, 1038-1052.

    3. [3]

      (3) Nicolet, Y.; Fontecilla-Camps, J. C. Structure-function relationships in FeFe-hydrogenase active site maturation. J. Biol. Chem. 2012, 287, 13532-13540.

    4. [4]

      (4) Broderick, J. B.; Byer, A. S.; Duschene, K. S.; Duffus, B. R.; Betz, J. N.; Shepard, E. M.; Peters, J. W. H-Cluster assembly during maturation of the FeFe-hydrogenase. J. Biol. Inorg. Chem. 2014, 19, 747-757.

    5. [5]

      (5) Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081-4148.

    6. [6]

      (6) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from clostridium pasteurianum to 1.8 angstrom resolution. Science 1998, 282, 1853-1858.

    7. [7]

      (7) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 1999, 7, 13-23.

    8. [8]

      (8) Tard, C.; Liu, X. M.; Ibrahim, S. K.; Bruschi, M.; De Gioia, L.; Davies, S. C.; Yang, X.; Wang, L. S.; Sawers, G.; Pickett, C. J. Synthesis of the H-cluster framework of iron-only hydrogenase. Nature 2005, 433, 610-613.

    9. [9]

      (9) Song, L. C. Investigations on butterfly Fe/S cluster S-centered anions (m-S-)2Fe2(CO)6, (m-S-)(m-RS)Fe2(CO)6, and related species. Acc. Chem. Res. 2005, 38, 21-28.

    10. [10]

      (10) Liu, X. M.; Ibrahim, S. K.; Tard, C.; Pickett, C. J. Iron-only hydrogenase: synthetic, structural and reactivity studies of model compounds. Coord. Chem. Rev. 2005, 249, 1641-1652.

    11. [11]

      (11) Sun, L. C.; Akermark, B.; Ott, S. Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production. Coord. Chem. Rev. 2005, 249, 1653-1663.

    12. [12]

      (12) Felton, G. A. N.; Mebi, C. A.; Petro, B. J.; Vannucci, A. K.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L. Review of electrochemical studies of complexes containing the Fe2S2 core characteristic of FeFe-hydrogenases including catalysis by these complexes of the reduction of acids to form dihydrogen. J. Organomet. Chem. 2009, 694, 2681-2699.

    13. [13]

      (13) Wang, Y.; Li, Z.; Zeng, X.; Wang, X.; Zhan, C.; Liu, Y.; Zeng, X.; Luo, Q.; Liu, X. Synthesis and characterisation of three diiron tetracarbonyl complexes related to the diiron centre of FeFe-hydrogenase and their protonating, electrochemical investigations. New J. Chem. 2009, 33, 1780-1789.

    14. [14]

      (14) Zeng, X.; Li, Z.; Xiao, Z.; Wang, Y.; Liu, X. Using pendant ferrocenyl group(s) as an intramolecular standard to probe the reduction of diiron hexacarbonyl model complexes for the sub-unit of FeFe -hydrogenase. Electrochem. Commun. 2010, 12, 342-345.

    15. [15]

      (15) Zhong, W.; Tang, Y.; Zampella, G.; Wang, X.; Yang, X.; Hu, B.; Wang, J.; Xiao, Z.; Wei, Z.; Chen, H.; De Gioia, L.; Liu, X. A rare bond between a soft metal (Fe-l) and a relatively hard base (RO-, R = phenolic moiety). Inorg. Chem. Commun. 2010, 13, 1089-1092.

    16. [16]

      (16) Xiao, Z. Y.; Wei, Z. H.; Long, L.; Wang, Y. L.; Evans, D. J.; Liu, X. M. Diiron carbonyl complexes possessing a {Fe(II)Fe(II)} core: synthesis, characterisation, and electrochemical investigation. Dalton Trans. 2011, 40, 4291-4299.

    17. [17]

      (17) Tang, Y.; Wei, Z.; Zhong, W.; Liu, X. Diiron complexes with pendant phenol group(s) as mimics of the diiron subunit of FeFe-hydrogenase: synthesis, characterisation, and electrochemical investigation. Eur. J. Inorg. Chem. 2011, 1112-1120.

    18. [18]

      (18) Long, L.; Xiao, Z. Y.; Zampella, G.; Wei, Z. H.; De Gioia, L.; Liu, X. M. The reactions of pyridinyl thioesters with triiron dodecacarbonyl: their novel diiron carbonyl complexes and mechanistic investigations. Dalton Trans. 2012, 41, 9482-9492.

    19. [19]

      (19) Wu, L. Z.; Chen, B.; Li, Z. J.; Tung, C. H. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Acc. Chem. Res. 2014, 47, 2177-2185.

    20. [20]

      (20) Qian, G.; Wang, H.; Zhong, W.; Liu, X. Electrochemical investigation into the electron transfer mechanism of a diiron hexacarbonyl complex bearing a bridging naphthalene moiety. Electrochim. Acta 2015, 163, 190-195.

    21. [21]

      (21) Pulukkody, R.; Darensbourg, M. Y. Synthetic advances inspired by the bioactive dinitrosyl iron unit. Acc. Chem. Res. 2015, 48, 2049-2058.

    22. [22]

      (22) Artero, V.; Berggren, G.; Atta, M.; Caserta, G.; Roy, S.; Pecqueur, L.; Fontecave, M. From enzyme maturation to synthetic chemistry: the case of hydrogenases. Acc. Chem. Res. 2015, 48, 2380-2387.

    23. [23]

      (23) Zhu, D.; Xiao, Z.; Liu, X. Introducing polyethyleneimine (PEI) into the electrospun fibrous membranes containing diiron mimics of [FeFe]-hydrogenase: Membrane electrodes and their electrocatalysis on proton reduction in aqueous media. Int. J. Hydrogen Energy 2015, 40, 5081-5091.

    24. [24]

      (24) Rauchfuss, T. B. Diiron azadithiolates as models for the FeFe-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc. Chem. Res. 2015, 48, 2107-2116.

    25. [25]

      (25) Capon, J. F.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J. Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the FeFe-hydrogenases. Coord. Chem. Rev. 2009, 253, 1476-1494.

    26. [26]

      (26) Song, L. C.; Ge, J. H.; Liu, X. F.; Zhao, L. Q.; Hu, Q. M. Synthesis, structure and electrochemical properties of N-substituted diiron azadithiolates as active site models of Fe-only hydrogenases. J. Organomet. Chem. 2006, 691, 5701-5709.

    27. [27]

      (27) Lawrence, J. D.; Li, H.; Rauchfuss, T. B. Beyond Fe-only hydrogenases: N-functionalized 2-aza-1,3-dithiolates Fe[(SCH)NR](CO)x (x = 5, 6). Chem. Commun. 2001, 1482-1483.

    28. [28]

      (28) Jiang, S.; Liu, J. H.; Sun, L. C. A furan-containing diiron azadithiolate hexacarbonyl complex with unusual lower catalytic proton reduction potential. Inorg. Chem. Commun. 2006, 9, 290-292.

    29. [29]

      (29) Jiang, S.; Liu, J. H.; Shi, Y.; Wang, Z.; Akermark, B.; Sun, L. H. Preparation, characteristics and crystal structures of novel N-heterocyclic carbene substituted furan- and pyridine-containing azadithiolate Fe-S complexes. Polyhedron 2007, 26, 1499-1504.

    30. [30]

      (30) Jiang, S.; Liu, J. H.; Shi, Y.; Wang, Z.; Akermark, B.; Sun, L. C. Fe-S complexes containing five-membered heterocycles: novel models for the active site of hydrogenases with unusual low reduction potential. Dalton Trans. 2007, 896-902.

    31. [31]

      (31) Sheldrick, G. M. SADABS. University of Göttingen: Germany 1996.

    32. [32]

      (32) Sheldrick, G. M. SHELXS97, Program for Crystal Structure Solution. University of Göttingen: Germany 1997.

    33. [33]

      (33) Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement. University of Göttingen: Germany 1997.

    34. [34]

      (34) Angamuthu, R.; Carroll, M. E.; Ramesh, M.; Rauchfuss, T. B. A new route to azadithiolato complexes. Eur. J. Inorg. Chem. 2011, 1029-1032.

    35. [35]

      (35) Xu, F.; Tard, C.; Wang, X.; Ibrahim, S. K.; Hughes, D. L.; Zhong, W.; Zeng, X.; Luo, Q.; Liu, X.; Pickett, C. J. Controlling carbon monoxide binding at di-iron units related to the iron-only hydrogenase sub-site. Chem. Commun. 2008, 606-608.

    36. [36]

      (36) Xiao, Z.; Xu, F.; Long, L.; Liu, Y.; Zampella, G.; De Gioia, L.; Zeng, X.; Luo, Q.; Liu, X. Influence of the basicity of internal bases in diiron model complexes on hydrides formation and their transformation into protonated diiron hexacarbonyl. J. Organomet. Chem. 2010, 695, 721-729.

    37. [37]

      (37) Wang, F. J.; Wang, M.; Liu, X. Y.; Jin, K.; Dong, W. B.; Li, G. H.; Akermark, B.; Sun, L. C. Spectroscopic and crystallographic evidence for the N-protonated (FeFeI)-Fe-I azadithiolate complex related to the active site of Fe-only hydrogenases. Chem. Commun. 2005, 3221-3223.

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    3. [3]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    4. [4]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    5. [5]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    6. [6]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    7. [7]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    8. [8]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    9. [9]

      Jinwei Duan Ying Wang Lin Cui Huayu Zheng Kang Wang Yinghui Wang Shanshan Wang Jiajia Li Qizhao Wang . Exploration and Practice in the Construction of Ideological and Political Education for the Foundational Course “General Chemistry” Based on Cultural Confidence in Sino-Foreign Cooperative Education. University Chemistry, 2024, 39(4): 227-237. doi: 10.3866/PKU.DXHX202310052

    10. [10]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    11. [11]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    12. [12]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    13. [13]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    14. [14]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    15. [15]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    16. [16]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    17. [17]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    18. [18]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    19. [19]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    20. [20]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

Metrics
  • PDF Downloads(0)
  • Abstract views(775)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return