Citation: CHI Yang, GUO Sheng-Ping. Syntheses and Crystal Structures of Two AlxRE3(Si1-yAly)S7 (RE = Sm and Gd) Compounds[J]. Chinese Journal of Structural Chemistry, ;2016, 35(3): 341-347. doi: 10.14102/j.cnki.0254-5861.2011-0978 shu

Syntheses and Crystal Structures of Two AlxRE3(Si1-yAly)S7 (RE = Sm and Gd) Compounds

  • Corresponding author: GUO Sheng-Ping, 
  • Received Date: 16 September 2015
    Available Online: 19 November 2015

    Fund Project: This research was supported by the Higher Education Science Foundation of Jiangsu Province (No. 15KJB150031) (No. 15KJB150031) State Key Laboratory of Structural Chemistry (No. 20150009) (No. 20150009)

  • Two new quaternary rare-earth chalcogenides, Al0.42Sm3(Si0.74Al0.26)S7 (1) and Al0.38Gd3(Si0.86Al0.14)S7 (2), have been synthesized by a facile solid-state route with boron as the reducing reagent. They crystallize in the noncentrosymmetric hexagonal space group P63, belonging to the Ce6Al3.33S14 structure-type. Their 3-D structures feature 3-D frameworks constructed by RES8 bicapped trigonal prisms, and Al and Si occupy the octahedral and tetrahedral voids, respectively. Al(2) and Si(1) co-occupying the 2b site and Al(1) partially occupying the 2a site have to be considered for the stability of the structures and charge balances. The Ce6Al3.33S14 structure-type compounds with their rich compositions and traits are discussed. The diffuse reflectance spectrum measurement of 2 indicates that it has an energy gap of 2.13 eV.
  • 加载中
    1. [1]

      (1) Mitchell, K.; Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929-1952.

    2. [2]

      (2) Chung, I.; Kanatzidis, M. G. Metal chalcogenides: a rich source of nonlinear optical materials. Chem. Mater. 2014, 26, 849-869.

    3. [3]

      (3) Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818-821.

    4. [4]

      (4) Sun, Y. Y.; Agiorgousis, M. L.; Zhang, P. H.; Zhang, S. B. Chalcogenide perovskites for photovoltaics. Nano Lett. 2015, 15, 581-585.

    5. [5]

      (5) Li, H.; Malliakas, C. D.; Liu, Z. F.; Peters, J. A.; Sebastian, M.; Zhao, L. D.; Chung, D. Y.; Wessels, B. W.; Kanatzidis, M. G. Investigation of semi-insulating Cs2Hg6S7 and Cs2Hg6-xCdxS7 alloy for hard radiation detection. Cryst. Growth & Des. 2014, 14, 5949-5956.

    6. [6]

      (6) Guo, S. P.; Guo, G. C.; Wang, M. S.; Zou, J. P.; Xu, G.; Wang, G. J.; Long, X. F.; Huang, J. S. A series of new infrared NLO semiconductors, ZnY6Si2S14, AlxDy3(SiyAl1-y)S7, and Al0. 33Sm3SiS7. Inorg. Chem. 2009, 48, 7059-7065.

    7. [7]

      (7) Guo, S. P.; Zeng, H. Y.; Guo, G. C.; Zou, J. P.; Xu, G.; Huang, J. S. Syntheses, structures and band Gaps of KLnSiS4 (Ln = Sm, Yb). Chin. J. Struct. Chem. 2008, 27, 1543-1548.

    8. [8]

      (8) Wei, F.; Wei, Z.; Chen, X. S.; Liu, G. B.; Cao, W. W.; Hu, P. A. Solid-state reaction synthesis of a InSe/CuInSe2 lateral p-n heterojunction and application in high performance optoelectronic devices. Chem. Mater. 2015, 27, 983-989.

    9. [9]

      (9) Ha, E.; Lee, L. Y. S.; Wang, J. C.; Li, F. H.; Wong, K. Y.; Tsang, S. C. E. Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2ZnSnS4 nanostructure. Adv. Mater. 2014, 26, 3496-3500.

    10. [10]

      (10) Rudyk, B. W.; Stoyko, S. S.; Oliynyk, A. O.; Mar, A. Rare-earth transition-metal gallium chalcogenides RE3MGaCh7 (M = Fe, Co, Ni; Ch = S, Se). J. Solid State Chem. 2014, 210, 79-88.

    11. [11]

      (11) Gulay, L. D.; Lychmanyuk, O. S.; Stępień-Damm, J.; Pietraszko, A.; Olekseyuk, I. D. Isothermal section of the Y2S3-Cu2S-GeS2 system at 870 K and crystal structures of the Y3Ge1.25S7 and Y3CuGeS7 compounds. J. Alloys & Compd. 2006, 414, 113-117.

    12. [12]

      (12) Zhao, H. J. Syntheses, crystal structures, and NLO properties of the quaternary sulfides RE3Sb0.33SiS7 (RE = La, Pr). J. Solid State Chem. 2015, 227, 5-9.

    13. [13]

      (13) Huch, M. R.; Gulay, L. D.; Olekseyuk, I. D. Crystal structures of the R3Mg0.5GeS7 (R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er) compounds. J. Alloys & Compd. 2006, 424, 114-118.

    14. [14]

      (14) Guo, S. P.; Guo, G. C.; Wang, M. S.; Zou, J. P.; Zeng, H. Y.; Cai, L. Z.; Huang, J. S. A facile approach to hexanary chalcogenoborate featuring a 3-D chiral honeycomb-like open-framework constructed from rare-earth consolidating thiogallate-closo-dodecaborate. Chem. Commun. 2009, 29, 4366-4368.

    15. [15]

      (15) Guo, S. P.; Wang, G. E.; Zhang, M. J.; Wu, M. F.; Liu, G. N.; Jiang, X. M.; Guo, G. C.; Huang, J. S. Novel single-crystal's voltage-dependent effect and magnetic order of Ln2ZrQ5 (Ln = La, Sm, Gd; Q = S, Se) semiconductors. Dalton Trans. 2013, 42, 2679-2682.

    16. [16]

      (16) Guo, S. P.; Guo, G. C. Crystal structure and magnetic and photocatalytic properties of a new ternary rare-earth mixed chalcogenide, Dy4S4Te3. J. Mater. Chem. A 2014, 2, 20621-20628.17.

    17. [17]

      (17) Jiang, X. M.; Guo, S. P.; Zeng, H. Y.; Zhang, M. J.; Guo, G. C. Large crystal growth and new crystal exploration of mid-infrared second-order nonlinear optical materials. Struct. & Bond. 2012, 145, 1-43.

    18. [18]

      (18) Rigaku, CrystalClear Version 1.3.5, Rigaku Corporation 2002.

    19. [19]

      (19) Siemens, SHELXTLTM Version 5 Reference Manual, Siemens Energy & Automation Inc., Madison, Wisconsin, USA 1994.

    20. [20]

      (20) Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy, Interscience Publishers, New York 1966.

    21. [21]

      (21) Kortüm, G. Reflectance Spectroscopy, Springer 1969.

    22. [22]

      (22) Pless, J. D.; Kim, H. S.; Smit, J. P.; Wang, X. D.; Stair, P. C.; Poeppelmeier, K. R. Structure of Mg2.56V1.12W0.88O8 and vibrational Raman spectra of Mg2.5VWO8 and Mg2.5VMoO8. Inorg. Chem. 2006, 45, 514-520.

    23. [23]

      (23) Choi, K. S.; Chung, D. Y.; Mrotzek, A.; Brazis, P.; Kannewurf, C. R.; Uher, C.; Chen, W.; Hogan, T.; Kanatzidis, M. G. Modular construction of A1+xM4-2xM'7+xSe15 (A = K, Rb; M = Pb, Sn; M' = Bi, Sb): a new class of solid state quaternary thermoelectric compounds. Chem. Mater. 2001, 13, 756-764.

    24. [24]

      (24) Mrotzek, A.; Kanatzidis, M. G. Tropochemical cell-twinning in the new quaternary bismuth selenides KxSn6-2xBi2+xSe9 and KSn5Bi5Se13. Inorg. Chem. 2003, 42, 7200-7206.

    25. [25]

      (25) Shi, Y. F.; Chen, Y. K.; Chen, M. C.; Wu, L. M.; Lin, H.; Zhou, L. J.; Chen, L. Strongest second harmonic generation in the polar R3MTQ7 family: atomic distribution induced nonlinear optical cooperation. Chem. Mater. 2015, 27, 1876-1884.

    26. [26]

      (26) Choudhury, A.; Dorhout, P. K. Alkali-metal thiogermanates: sodium channels and variations on the La3CuSiS7 structure type. Inorg. Chem. 2015, 54, 1055-1065.

    27. [27]

      (27) Lin, S. H.; Mao, J. G.; Guo, G. C.; Huang, J. S. Synthesis and crystal structure of a new quaternary compound: La3AgSe7Si. J. Alloy & Compd. 1997, 252, L8-L11.

    28. [28]

      (28) Yin, W. L.; Shi, Y. G.; Kang, B.; Deng, J. G.; Yao, J. Y.; Wu, Y. C. Rare-earth transition-metal chalcogenides Ln3MGaS7 (Ln = Nd, Sm, Dy, Er; M = Co, Ni) and Ln3MGaSe7 (Ln = Nd, Sm, Gd, Dy, M = Co; Ln= Nd, Gd, Dy, M = Ni). J. Solid State Chem. 2014, 213, 87-92.

    29. [29]

      (29) Yin, W. L.; Wang, W. D.; Kang, L.; Lin, Z. S.; Feng, K.; Shi, Y. G.; Hao, W. Y.; Yao, J. Y.; Wu, Y. C. Ln3FeGaQ7: a new series of transition-metal rare-earth chalcogenides. J. Solid State Chem. 2013, 202, 269-275.

    30. [30]

      (30) Guo, S. P.; Zeng, H. Y.; Jiang, X. M.; Guo, G. C. Crystal structure and magnetic property of a quaternary sulfide, Al0.36Sm3Ge0.98S7. Chin. J. Struct. Chem. 2009, 11, 1448-1452.

    31. [31]

      (31) Yang, Y. T.; Ibers, J. A. Accidental silicon-containing compounds: crystal structures of La3Al0.44Si0.93S7, BaSm4(SiO4)3Se, and monoclinic and orthorhombic Ln2(SiO4)Te (Ln = Nd and Sm). J. Solid State Chem. 2000, 155, 433-440.

    32. [32]

      (32) Zhao, Z. Y.; Liu, B. W.; Zeng, H. Y.; Jiang, X. M.; Zhang, M. J.; Zheng, F. K.; Guo, G. C. Syntheses and single-crystal structures of Ln3Sn0.25GeS7 (Ln = La, Sm). Chin. J. Struct. Chem. 2012, 31, 1135-1139.

    33. [33]

      (33) Daszkiewicz, M.; Gulay, L. D.; Lychmanyuk, O. S. Ln3M1-δTX7-quasi-isostructural compounds: stereochemistry and silver-ion motion in the Ln3Ag1-δGeS7 (Ln = La-Nd, Sm, Gd-Er and Y; δ = 0.11~0.50) compounds. Acta Crystllogr. B 2009, 65, 126-133.

    34. [34]

      (34) Patrie, M.; Guittard, M. Chimie minerale. Sur les composes du type Ce6Al10/3S14. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, Serie C, Sciences Chimiques 1969, 268, 1136-1138.

    35. [35]

      (35) Iyer, A. K.; Rudyk, B. W.; Lin, X. S.; Singh, H.; Sharma, A. Z.; Wiebe, C. R.; Mar, A. Noncentrosymmetric rare-earth copper gallium chalcogenides RE3CuGaCh7 (RE = La-Nd; Ch = S, Se): an unexpected combination. J. Solid State Chem. 2015, 229, 150-159.

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    11. [11]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    12. [12]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    15. [15]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

Metrics
  • PDF Downloads(0)
  • Abstract views(874)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return