Citation:
WANG Fang-Ming, HU Bing-Xiang, CHEN Chuan-Xiang, ZHOU Ze-Yu, BAO Dan, CHEN Li-Zhuang. Synthesis and Biological Activities of 10-Substituted 9-Aryl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-diones[J]. Chinese Journal of Structural Chemistry,
;2016, 35(3): 442-448.
doi:
10.14102/j.cnki.0254-5861.2011-0915
-
A series of 10-substituted 9-aryl-3, 4, 6, 7, 9, 10-hexahydroacridine-1, 8(2H, 5H)-dione derivatives 2 were synthesized by a two-step reaction. All the compounds were characterized by IR, MS, and 1H NMR. Crystals of 1a and 2c were obtained and determined by X-ray single-crystal diffraction. Crystal data of 1a: C20H22O5, orthorhombic system, space group Pbcn, a = 15.8888(19), b = 18.228(2), c = 11.6926(13) Å, V = 3386.4(7) Å3, Z = 8, F(000) = 1456, Dc = 1.343 g/cm3, R = 0.0456 and wR = 0.1600. Crystal data of 2c: C26H24ClNO3, monoclinic system, space group P21/n, a = 8.628(2), b = 10.912(3), c = 22.425(7) Å, β = 90.786(4)°, V = 2111.1(10) Å3, Z = 4, F(000) = 912, Dc = 1.365 g/cm3, R = 0.0613, and wR = 0.1196. The results of biological experiments show that compounds 2b and 2c could inhibit the proliferation of HepG2 cells.
-
Keywords:
- xanthenes,
- acridones,
- synthesis,
- crystal structure,
- biological activity
-
-
-
[1]
(1) Michael, J. P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 2005, 22, 627-646.
-
[2]
(2) Bernardino, A. M. R.; Castro, H. C.; Frugulhetti, L. C. P. P.; Loureiro, N. I. V.; Azevedo, A. R.; Pinheiro, L. C. S.; Souza, T. M. L.; Giongo, V.; Passamani, F.; Magalhaes, U. O.; Albuquerque, M. G.; Cabral, L. M.; Rodrigues; C. R. SAR of a series of anti-HSV-1 acridone derivatives, and a rational acridone-based design of a new anti-HSV-1 3H-benzo[b]pyrazolo[3, 4-h]-1, 6-naphthyridine series. Bioorg. Med. Chem. 2008, 16, 313-321.
-
[3]
(3) Boumendjel, A.; Macalou, S.; Ahmed-Belkacem, A.; Blanc, M.; Pietro, A. D. Acridone derivatives: design, synthesis, and inhibition of breast cancer resistance protein ABCG2. Bioorg. Med. Chem. 2007, 15, 2892-2897.
-
[4]
(4) Hegde, R.; Thimmaiah, P.; Yerigeri, M. C.; Krishnegowda, G.; Thimmaiah, K. N.; Houghton, P. J. Anti-calmodulin acridone derivatives modulate vinblastine resistance in multidrug resistant (MDR) cancer cells. Eur. J. Med. Chem. 2004, 39, 161-177.
-
[5]
(5) Prasad, V. V. S. R.; Honeywell, R.; Rao, J. V.; Sathish, N. K.; Kumar, S. M. S.; Mayur, Y. C. Characteristic fragmentation behavior of some novel anti-calmodulin acridone derivatives studied by electrospray ionization tandem mass spectrometry. Int. J. Mass Spectrom. 2007, 263, 148-151.
-
[6]
(6) Michael, J. P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 2008, 25, 166-187.
-
[7]
(7) Jose, M. C.; Elena, P. M.; Abdelouahid, S.; Maria, C. C.; Elena, S. Recent advances in the Friedländer reaction. Chem. Rev. 2009, 109, 2652-2671.
-
[8]
(8) Qiu, B.; Guo, L. H.; Chen, Z. T.; Chi, Y. W.; Zhang, L.; Chen, G. N. Synthesis of N-4-butylamine acridone and its use as fluorescent probe for ctDNA. Biosens. Bioelectron 2009, 24, 1281-1285.
-
[9]
(9) Drlica, K.; Malik, M. Fluoroquinolones: actionand resistance. Curr. Top. Med. Chem. 2003, 3, 249-282.
-
[10]
(10) Boumendjel, A.; Macalou, S.; Ahmed-Belkacem, A.; Blanc, M.; Pietro, A. D. Acridone derivatives: design, synthesis, and inhibition of breast cancer resistance protein ABCG2. Bioorg. Med. Chem. 2007, 15, 2892-2897.
-
[11]
(11) Belmont, P.; Bosson, J.; Godet, T.; Tiano, M. Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anti-Cancer Agents Med. Chem. 2007, 7, 139-169.
-
[12]
(12) Goodell, J. R.; Ougolkov, A. V.; Hiasa, H.; Kaur, H.; Remmel, R.; Billadeau, D. D.; Ferguson, D. M. Acridine-based agents with topoisomerase II activity inhibit pancreatic cancer cell proliferation and induce apoptosis. J. Med. Chem. 2008, 51, 179-182.
-
[13]
(13) Kaur, J.; Singh, P. Acridine derivatives: a patent review (2009 - 2010). Expert. Opin. Ther. Pat. 2011, 21, 437-454.
-
[14]
(14) Goodell, J. R.; Madhok, A. A.; Hiasa, H.; Ferguson, D. M. Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity. Bioorg. Med. Chem. 2006, 14, 5467-5480.
-
[15]
(15) Boulanger, C.; Di, G. C.; Vierling, P. Synthesis of acridine-nuclear localization signal (NLS) conjugates and evaluation of their impact on lipoplex and polyplex-based transfection. Eur. J. Med. Chem. 2005, 40, 1295-1306.
-
[16]
(16) Moore, M. J. B.; Schultes, C. M.; Cuesta, J.; Cuenca, F.; Gunaratnam, M.; Tanious, F. A.; Wilson, W. D.; Neidle, S. Trisubstituted acridines as G-quadruplex telomere targeting agents. Effects of extensions of the 3, 6- and 9-side chains on quadruplex binding, telomerase activity, and cell proliferation. J. Med. Chem. 2006, 49, 582-599.
-
[17]
(17) Lambert, R. W.; Martin, J. A.; Merrett, J. H.; Parkes, K. E. B.; Thomas, G. J. PCTInt. Appl. W O9706178 1997.
-
[18]
(18) Shakibaei, G. I.; Mirzaei, P.; Bazgir, A. Dowex-50W promoted synthesis of 14-aryl-14H-dibenzo[a, j]xanthene and 1, 8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Appl. Catal. A: Gen. 2007, 325, 188-192.
-
[19]
(19) Hua, G. P.; Li, T. J.; Zhou, X.; Tu, S. J.; Zhu, S. L.; Zhang, X. J.; Ji, S. J.; Zhang, Y. One-pot synthesis of 9-aryl-1, 2, 3, 4, 5, 6, 7, 8, 9, 10-decahydro- 1, 8-acridinedione under microwave irradiation. Chin. J. Org. Chem. 2005, 25, 1294-1297.
-
[20]
(20) Kaya, M.; Yildirir, Y.; Turker, L. Synthesis and laser activity of halo-acridinedione derivatives. J. Heterocyclic. Chem. 2009, 46, 294-297.
-
[21]
(21) Software packages SMART and SAINT, Bruker AXS Inc., Madison, WI (2000).
-
[22]
(22) Sheldrick. G. M. SHELXL-97, Program for the Refinement of Crystal Structure. University of Gottingen, Germany 1997.
-
[23]
(23) Zhao, B.; Ge, J. F.; Zhu, J. J.; Huang, X. H.; Li, J. Calculation methods in evaluation of cell proliferation inhibition rate in MTT tests. Anhui Med. Pharm. 2007, 11, 834-836.
-
[24]
(24) Ougolkov, A. V.; Fernandez-Zapico, M. E.; Savoy, D. N.; Urrutia, R. A.; Billadeau, D. D. Glycogen synthesis Kinase-3β participates in nuclear factor B-mediated gene transcription and cell survival in Pancreatic cancer cells. Cancer Res. 2005, 65, 2076-2081.
-
[1]
-
-
-
[1]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[2]
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
-
[3]
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
-
[4]
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
-
[5]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[6]
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
-
[7]
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
-
[8]
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
-
[9]
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
-
[10]
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
-
[11]
Xiumei LI , Linlin LI , Bo LIU , Yaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273
-
[12]
Yan XU , Suzhi LI , Yan LI , Lushun FENG , Wentao SUN , Xinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226
-
[13]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[14]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[15]
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
-
[16]
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
-
[17]
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
-
[18]
Shuyan ZHAO . Field-induced CoⅡ single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231
-
[19]
Yinling HOU , Jia JI , Hong YU , Xiaoyun BIAN , Xiaofen GUAN , Jing QIU , Shuyi REN , Ming FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251
-
[20]
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(840)
- HTML views(17)