Citation: LEI Qian, LIU Qing-Yan, WANG Yu-Ling, CHEN Li-Li, YIN Shun-Gao. Two Three-dimensional Terbium-1,4-benzenedicarboxylate Coordination Polymers: Syntheses, Structures, and Luminescence[J]. Chinese Journal of Structural Chemistry, ;2016, 35(4): 566-576. doi: 10.14102/j.cnki.0254-5861.2011-0901 shu

Two Three-dimensional Terbium-1,4-benzenedicarboxylate Coordination Polymers: Syntheses, Structures, and Luminescence

  • Received Date: 17 July 2015
    Available Online: 10 October 2015

    Fund Project: Supported by the NNSFC (21361011) (21361011) the Provincial Natural Science Foundation of Jiangxi (20151BAB203002) (20151BAB203002) the Project of Education Department of Jiangxi Province (GJJ14235) (GJJ14235)the Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University (KLFS-KF-201412) (KLFS-KF-201412)

  • Two coordination polymers with 1,4-benzenedicarboxylic acid (H2BDC) ligand, namely,[Tb3(BDC)4.5(H2O)(DMF)2]n (1) and[Tb2(BDC)3(H2O)2(DMF)2]n (2), have been synthesized and characterized. Both compounds crystallize in the triclinic system, space group P1. For compound 1, a=10.8528(5), b=12.2516(5), c=16.9031(7) Å, α=104.462(1), β=93.659(1), γ=101.404(1)°, V=2118.1(2) Å3, Z=2, C42H34N2O21Tb3, Mr=1379.47, Dc=2.163 g/cm3, μ=5.045 mm-1, F(000)=1326, the final R=0.0212 and wR=0.0570 for 8592 observed reflections with I > 2σ(I). For compound 2, a=8.547(1), b=10.170(1), c=11.192(1) Å, α=65.531(1), β=71.886(1), γ=78.796(1)°, V=839.2(2) Å3, Z=1, C30H30N2O16Tb2, Mr=992.40, Dc=1.964 g/cm3, μ=4.257 mm-1, F(000)=482, the final R=0.0220 and wR=0.0649 for 3626 observed reflections with I > 2σ(I). The compounds exhibit different structural topologies depending on the nature of templating agents in the reactions though the templating agents are not incorporated in the final solids. Compound 1 exhibits a three-dimensional (3D) framework based on the rod-shaped terbium-carboxylate building blocks constructed from linear trinuclear Tb3 units. Compound 2 has a 3D framework containing two interpenetrating pcu topological networks based on the 6-connected dinuclear Tb2 secondary building units. Photoluminescence studies show both compounds exhibit typical Tb(Ⅲ) luminescence emissions. An efficient ligand-to-Tb(Ⅲ) energy transfer is observed in the emission spectra for both compounds.
  • 加载中
    1. [1]

      (1) Moulton, B.; Zaworotko, M. J. From molecules to crystal engineering:supramolecular isomerism and polymorphism in network solids. Chem. Rev. 2001, 101, 1629-1658.

    2. [2]

      (2) Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334-2375.

    3. [3]

      (3) Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M. Modular chemistry:secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319-330.

    4. [4]

      (4) Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Lanthanide probes for bioresponsive imaging. Chem. Rev. 2014, 114, 4496-4539.

    5. [5]

      (5) Feltham, H. L. C.; Brooker, S. Review of purely 4f and mixed-metal nd-4f single-molecule magnets containing only one lanthanide ion. Coord. Chem. Rev. 2014, 276, 1-33.

    6. [6]

      (6) Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1248-1256.

    7. [7]

      (7) Kreno, L.; Leong, E. K.; Farha, O. K.; Allendorf, M.; Duyne, R. P. V.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105-1125.

    8. [8]

      (8) He, H.; Ma, H.; Sun, D.; Zhang, L.; Wang, R.; Sun, D. Porous lanthanide-organic frameworks:control over interpenetration, gas adsorption, and catalyst properties. Cryst. Growth Des. 2013, 13, 3154-3161.

    9. [9]

      (9) He, H.; Yuan, D.; Ma, H.; Sun, D.; Zhang, G.; Zhou, H. C. Control over interpenetration in lanthanide-organic frameworks:synthetic strategy and gas-adsorption properties. Inorg. Chem. 2010, 49, 7605-7607.

    10. [10]

      (10) Liu, Q. Y.; Wang, W. F.; Wang, Y. L.; Shan, Z. M.; Wang, M. S.; Tang, J. Diversity of lanthanide(Ⅲ)-organic extended frameworks with a 4,8-disulfonyl-2,6-naphthalenedicarboxylic acid ligand:syntheses, structures, and magnetic and luminescent properties. Inorg. Chem. 2012, 51, 2381-2392.

    11. [11]

      (11) APEX2, SADABS and SAINT. Bruker AXS Inc.:Madison, Wisconsin, USA 2008.

    12. [12]

      (12) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A 2008, 64, 112-122.

    13. [13]

      (13) Guo, X.; Zhu, G.; Sun, F.; Li, Z.; Zhao, X.; Li, X.; Wang, H.; Qiu, S. Synthesis, structure, and luminescent properties of microporous lanthanide metal-organic frameworks with inorganic rod-shaped building units. Inorg. Chem. 2006, 45, 2581-2587.

    14. [14]

      (14) Cao, H. Y.; Liu, Q. Y.; Gao, M. J.; Wang, Y. L.; Chen, L. L.; Liu, Y. Ionothermal syntheses, crystal structures and luminescence of three three-dimensional lanthanide-1,4-benzenedicarboxylate frameworks. Inorg. Chim. Acta 2014, 414, 226-233.

    15. [15]

      (15) Wang, Y. L.; Liu, Q. Y.; Xu, L.; Zhong, S. L. Supramolecular terbium-SIP complex pillared by 4,4'-bipyridyl, {[Tb(SIP)(HO)5]2(bpy)3(H2O)}n:synthesis, crystal structure and photoluminescence. Chin. J. Struct. Chem. 2008, 27, 362-368.

    16. [16]

      (16) Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O'Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504-1518.

    17. [17]

      (17) Zhang, J.; Wu, T.; Chen, S. M.; Feng, P. Y.; Bu, X. H. Versatile structure-directing roles of deep-eutectic solvents and their implication in the generation of porosity and open metal sites for gas storage. Angew. Chem. Int. Ed. 2009, 48, 3486-3490.

    18. [18]

      (18) Blatov, V. A.; Shevchenko, A. P.; Serezhkin, V. N. A new version of the program package for multipurpose crystal-chemical analysis. J. Appl. Crystallogr. 2000, 33, 1193-1193.

    19. [19]

      (19) Zhang, Z. H.; Wan, S. Y.; Okamura, T.; Sun, W. Y.; Ueyama, N. Synthesis and crystal structure of two lanthanide complexes with benzenecarboxylic derivatives. Z. Anorg. Allg. Chem. 2006, 632, 679-683.

    20. [20]

      (20) Zhang, J.; Bu, J. T.; Chen, S.; Wu, T.; Zheng, S.; Chen, Y.; Nieto, R. A.; Feng, P.; Bu, X. Urothermal synthesis of crystalline porous materials. Angew. Chem. Int. Ed. 2010, 49, 8876-8879.

    21. [21]

      (21) Han, Y.; Li, X.; Li, L.; Ma, C.; Shen, Z.; Song, Y.; You, X. Structures and properties of porous coordination polymers based on lanthanide carboxylate building units. Inorg. Chem. 2010, 49, 10781-10787.

    22. [22]

      (22) Zhang, W. Z. Poly[diaqua-µ4-benzene-1,4-dicarboxyl-ato-di-µ2-benzene-1,4-dicarboxyl-ato-bis-(N,N'-dimethyl-formamide) digadolinium(Ⅲ)]. Acta Crystallogr., Sect. E:Struct. Rep. 2006, 62, m1600-m1602.

    23. [23]

      (23) Song, X. Z.; Song, S. Y.; Qin, C.; Su, S. Q.; Zhao, S. N.; Zhu, M.; Hao, Z. M.; Zhang, H. J. Syntheses, structures, and photoluminescent properties of coordination polymers based on 1,4-bis(imidazol-l-ylmethyl)benzene and various aromatic dicarboxylic acids. Cryst. Growth Des. 2012, 12, 253-263.

    24. [24]

      (24) Richardson, F. S. Terbium(Ⅲ) and europium(Ⅲ) ions as luminescent probes and stains for biomolecular systems. Chem. Rev. 1982, 82, 541-552.

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    3. [3]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    4. [4]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    5. [5]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    6. [6]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    7. [7]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    8. [8]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    9. [9]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    10. [10]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    11. [11]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    12. [12]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    13. [13]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    14. [14]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    15. [15]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    16. [16]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    17. [17]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    18. [18]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    19. [19]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    20. [20]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

Metrics
  • PDF Downloads(0)
  • Abstract views(881)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return