Citation:
LEI Qian, LIU Qing-Yan, WANG Yu-Ling, CHEN Li-Li, YIN Shun-Gao. Two Three-dimensional Terbium-1,4-benzenedicarboxylate Coordination Polymers: Syntheses, Structures, and Luminescence[J]. Chinese Journal of Structural Chemistry,
;2016, 35(4): 566-576.
doi:
10.14102/j.cnki.0254-5861.2011-0901
-
Two coordination polymers with 1,4-benzenedicarboxylic acid (H2BDC) ligand, namely,[Tb3(BDC)4.5(H2O)(DMF)2]n (1) and[Tb2(BDC)3(H2O)2(DMF)2]n (2), have been synthesized and characterized. Both compounds crystallize in the triclinic system, space group P1. For compound 1, a=10.8528(5), b=12.2516(5), c=16.9031(7) Å, α=104.462(1), β=93.659(1), γ=101.404(1)°, V=2118.1(2) Å3, Z=2, C42H34N2O21Tb3, Mr=1379.47, Dc=2.163 g/cm3, μ=5.045 mm-1, F(000)=1326, the final R=0.0212 and wR=0.0570 for 8592 observed reflections with I > 2σ(I). For compound 2, a=8.547(1), b=10.170(1), c=11.192(1) Å, α=65.531(1), β=71.886(1), γ=78.796(1)°, V=839.2(2) Å3, Z=1, C30H30N2O16Tb2, Mr=992.40, Dc=1.964 g/cm3, μ=4.257 mm-1, F(000)=482, the final R=0.0220 and wR=0.0649 for 3626 observed reflections with I > 2σ(I). The compounds exhibit different structural topologies depending on the nature of templating agents in the reactions though the templating agents are not incorporated in the final solids. Compound 1 exhibits a three-dimensional (3D) framework based on the rod-shaped terbium-carboxylate building blocks constructed from linear trinuclear Tb3 units. Compound 2 has a 3D framework containing two interpenetrating pcu topological networks based on the 6-connected dinuclear Tb2 secondary building units. Photoluminescence studies show both compounds exhibit typical Tb(Ⅲ) luminescence emissions. An efficient ligand-to-Tb(Ⅲ) energy transfer is observed in the emission spectra for both compounds.
-
-
-
[1]
(1) Moulton, B.; Zaworotko, M. J. From molecules to crystal engineering:supramolecular isomerism and polymorphism in network solids. Chem. Rev. 2001, 101, 1629-1658.
-
[2]
(2) Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334-2375.
-
[3]
(3) Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M. Modular chemistry:secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319-330.
-
[4]
(4) Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Lanthanide probes for bioresponsive imaging. Chem. Rev. 2014, 114, 4496-4539.
-
[5]
(5) Feltham, H. L. C.; Brooker, S. Review of purely 4f and mixed-metal nd-4f single-molecule magnets containing only one lanthanide ion. Coord. Chem. Rev. 2014, 276, 1-33.
-
[6]
(6) Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1248-1256.
-
[7]
(7) Kreno, L.; Leong, E. K.; Farha, O. K.; Allendorf, M.; Duyne, R. P. V.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105-1125.
-
[8]
(8) He, H.; Ma, H.; Sun, D.; Zhang, L.; Wang, R.; Sun, D. Porous lanthanide-organic frameworks:control over interpenetration, gas adsorption, and catalyst properties. Cryst. Growth Des. 2013, 13, 3154-3161.
-
[9]
(9) He, H.; Yuan, D.; Ma, H.; Sun, D.; Zhang, G.; Zhou, H. C. Control over interpenetration in lanthanide-organic frameworks:synthetic strategy and gas-adsorption properties. Inorg. Chem. 2010, 49, 7605-7607.
-
[10]
(10) Liu, Q. Y.; Wang, W. F.; Wang, Y. L.; Shan, Z. M.; Wang, M. S.; Tang, J. Diversity of lanthanide(Ⅲ)-organic extended frameworks with a 4,8-disulfonyl-2,6-naphthalenedicarboxylic acid ligand:syntheses, structures, and magnetic and luminescent properties. Inorg. Chem. 2012, 51, 2381-2392.
-
[11]
(11) APEX2, SADABS and SAINT. Bruker AXS Inc.:Madison, Wisconsin, USA 2008.
-
[12]
(12) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A 2008, 64, 112-122.
-
[13]
(13) Guo, X.; Zhu, G.; Sun, F.; Li, Z.; Zhao, X.; Li, X.; Wang, H.; Qiu, S. Synthesis, structure, and luminescent properties of microporous lanthanide metal-organic frameworks with inorganic rod-shaped building units. Inorg. Chem. 2006, 45, 2581-2587.
-
[14]
(14) Cao, H. Y.; Liu, Q. Y.; Gao, M. J.; Wang, Y. L.; Chen, L. L.; Liu, Y. Ionothermal syntheses, crystal structures and luminescence of three three-dimensional lanthanide-1,4-benzenedicarboxylate frameworks. Inorg. Chim. Acta 2014, 414, 226-233.
-
[15]
(15) Wang, Y. L.; Liu, Q. Y.; Xu, L.; Zhong, S. L. Supramolecular terbium-SIP complex pillared by 4,4'-bipyridyl, {[Tb(SIP)(HO)5]2(bpy)3(H2O)}n:synthesis, crystal structure and photoluminescence. Chin. J. Struct. Chem. 2008, 27, 362-368.
-
[16]
(16) Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O'Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504-1518.
-
[17]
(17) Zhang, J.; Wu, T.; Chen, S. M.; Feng, P. Y.; Bu, X. H. Versatile structure-directing roles of deep-eutectic solvents and their implication in the generation of porosity and open metal sites for gas storage. Angew. Chem. Int. Ed. 2009, 48, 3486-3490.
-
[18]
(18) Blatov, V. A.; Shevchenko, A. P.; Serezhkin, V. N. A new version of the program package for multipurpose crystal-chemical analysis. J. Appl. Crystallogr. 2000, 33, 1193-1193.
-
[19]
(19) Zhang, Z. H.; Wan, S. Y.; Okamura, T.; Sun, W. Y.; Ueyama, N. Synthesis and crystal structure of two lanthanide complexes with benzenecarboxylic derivatives. Z. Anorg. Allg. Chem. 2006, 632, 679-683.
-
[20]
(20) Zhang, J.; Bu, J. T.; Chen, S.; Wu, T.; Zheng, S.; Chen, Y.; Nieto, R. A.; Feng, P.; Bu, X. Urothermal synthesis of crystalline porous materials. Angew. Chem. Int. Ed. 2010, 49, 8876-8879.
-
[21]
(21) Han, Y.; Li, X.; Li, L.; Ma, C.; Shen, Z.; Song, Y.; You, X. Structures and properties of porous coordination polymers based on lanthanide carboxylate building units. Inorg. Chem. 2010, 49, 10781-10787.
-
[22]
(22) Zhang, W. Z. Poly[diaqua-µ4-benzene-1,4-dicarboxyl-ato-di-µ2-benzene-1,4-dicarboxyl-ato-bis-(N,N'-dimethyl-formamide) digadolinium(Ⅲ)]. Acta Crystallogr., Sect. E:Struct. Rep. 2006, 62, m1600-m1602.
-
[23]
(23) Song, X. Z.; Song, S. Y.; Qin, C.; Su, S. Q.; Zhao, S. N.; Zhu, M.; Hao, Z. M.; Zhang, H. J. Syntheses, structures, and photoluminescent properties of coordination polymers based on 1,4-bis(imidazol-l-ylmethyl)benzene and various aromatic dicarboxylic acids. Cryst. Growth Des. 2012, 12, 253-263.
-
[24]
(24) Richardson, F. S. Terbium(Ⅲ) and europium(Ⅲ) ions as luminescent probes and stains for biomolecular systems. Chem. Rev. 1982, 82, 541-552.
-
[1]
-
-
-
[1]
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
-
[2]
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
-
[3]
Gaofeng WANG , Shuwen SUN , Yanfei ZHAO , Lixin MENG , Bohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479
-
[4]
Shihong Wu , Ronghui Zhou , Hang Zhao , Peng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026
-
[5]
Zhiwei Chen , Heyun Sheng , Xue Li , Menghan Chen , Xin Li , Qiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937
-
[6]
Huijie An , Chen Yang , Zhihui Jiang , Junjie Yuan , Zhongming Qiu , Longhao Chen , Xin Chen , Mutu Huang , Linlang Huang , Hongju Lin , Biao Cheng , Hongjiang Liu , Zhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134
-
[7]
Chaohui Zheng , Jing Xi , Shiyi Long , Tianpei He , Rui Zhao , Xinyuan Luo , Na Chen , Quan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223
-
[8]
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
-
[9]
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
-
[10]
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
-
[11]
Qi Li , Zi-Lu Wang , Yun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991
-
[12]
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
-
[13]
Pan Liu , Yanming Sun , Alberto J. Fernández-Carrión , Bowen Zhang , Hui Fu , Lunhua He , Xing Ming , Congling Yin , Xiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641
-
[14]
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
-
[15]
Yongjing Deng , Feiyang Li , Zijian Zhou , Mengzhu Wang , Yongkang Zhu , Jianwei Zhao , Shujuan Liu , Qiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085
-
[16]
Junying Zhang , Ruochen Li , Haihua Wang , Wenbing Kang , Xing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216
-
[17]
Hui-Juan Wang , Wen-Wen Xing , Zhen-Hai Yu , Yong-Xue Li , Heng-Yi Zhang , Qilin Yu , Hongjie Zhu , Yao-Yao Wang , Yu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183
-
[18]
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
-
[19]
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
-
[20]
Xue-Zhi Wang , Yi-Tong Liu , Chuang-Wei Zhou , Bei Wang , Dong Luo , Mo Xie , Meng-Ying Sun , Yong-Liang Huang , Jie Luo , Yan Wu , Shuixing Zhang , Xiao-Ping Zhou , Dan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(881)
- HTML views(50)