Citation: WANG Bin, LI Qian-Qian, WANG Jian-Fu, HUANG Xin, ZHANG Yong-Fan. Electronic Structures and Chemical Bonding of NbS6-/0 Clusters[J]. Chinese Journal of Structural Chemistry, ;2016, 35(2): 175-184. doi: 10.14102/j.cnki.0254-5861.2011-0894 shu

Electronic Structures and Chemical Bonding of NbS6-/0 Clusters

  • Corresponding author: WANG Bin, 
  • Received Date: 12 July 2015
    Available Online: 21 December 2015

    Fund Project: Foundation of Fuzhou University (2012-XY-6) (2013J06004)

  • Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations were employed to investigate the structural and electronic properties of NbS6- and NbS6 clusters. Generalized Koopmans’ theorem was applied to predict the vertical detachment energies and simulate the photoelectron spectra (PES). The current study indicated that various types of sulfur ligands (i.e., S2-, S2-, S22- and S32-) were presented in the lowest-energy structures of NbS6-/0. The ground-state structure of NbS6- is shown to be Cs (1A') symmetry with a terminal S2-, a side-on bound S22- and a S32- ligands. Molecular orbital analyses were performed to analyze the chemical bonding in NbS6-/0 clusters and elucidate their structural and electronic properties.
  • 加载中
    1. [1]

      (1) Stiefel, E. I.; Matsumoto, K. Eds. Transition Metal Sulfur Chemistry, Biological and Industrial Significance. American Chemical Society: Washington, DC 1997.

    2. [2]

      (2) Liu, Z. L.; Cai, L. C.; Zhang, X. L. Novel high pressure structures and superconductivity of niobium disulfide. J. Alloy. Compd. 2014, 610, 472-477.

    3. [3]

      (3) Abramova, G. M.; Petrakovskii, G. A. Metal-insulator transition, magnetoresistance, and magnetic properties of 3d-sulfides (review). Low. Temp. Phys. 2006, 32, 725-734.

    4. [4]

      (4) Eijsbouts, S.; Mayo, S. W.; Fujita, K. Unsupported transition metal sulfide catalysts: from fundamentals to industrial application. Appl. Catal. A-Gen. 2007, 322, 58-66.

    5. [5]

      (5) Geantet, C.; Afonso, J.; Breysse, M.; Allali, N.; Danot, M. Niobium sulfides as catalysts for hydrotreating reactions. Catal. Today 1996, 28, 23-30.

    6. [6]

      (6) Danot, M.; Afonso, J.; Portefaix, J. L.; Breysse, M.; Des Courières, T. Catalytic properties of niobium sulphides in the conversion of nitrogen containing molecules. Catal. Today 1991, 10, 629-643.

    7. [7]

      (7) Lewis, D. A.; Kenney, C. N. Niobium disulphide as an isomerisation and hydrogenation catalyst in the presence of hydrogen sulphide. Trans. Inst. Chem. Eng. 1981, 59, 186-195.

    8. [8]

      (8) Gaborit, V.; Allali, N.; Geantet, C.; Breysse, M.; Vrinat, M.; Danot, M. Niobium sulfide as a dopant for hydrotreating NiMo catalysts. Catal. Today 2000, 57, 267-273.

    9. [9]

      (9) Afanasiev, P. The influence of reducing and sulfiding conditions on the properties of unsupported MoS2-based catalysts. J. Catal. 2010, 269, 269-280.

    10. [10]

      (10) Afanasiev, P.; Jobic, H.; Lorentz, C.; Leverd, P.; Mastubayashi, N.; Piccolo, L.; Vrinat, M. Low-temperature hydrogen interaction with amorphous molybdenum sulfides MoSx. J. Phys. Chem. C 2009, 113, 4139-4146.

    11. [11]

      (11) Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262-1267.

    12. [12]

      (12) Duchet, J.; Van Oers, E.; De Beer, V.; Prins, R. Carbon-supported sulfide catalysts. J. Catal. 1983, 80, 386-402.

    13. [13]

      (13) Afanasiev, P.; Fischer, L.; Beauchesne, F.; Danot, M.; Gaborit, V.; Breysse, M. Preparation of the mixed sulfide Nb2Mo3S10 catalyst from the mixed oxide precursor. Catal. Lett. 2000, 64, 59-63.

    14. [14]

      (14) Afanasiev, P.; Bezverkhyy, I. Ternary transition metals sulfides in hydrotreating catalysis. Appl. Catal. A-Gen. 2007, 322, 129-141.

    15. [15]

      (15) (a) Wang, B.; Wu, N.; Zhang, X. B.; Huang, X.; Zhang, Y. F.; Chen, W. K.; Ding, K. N. Probing the smallest molecular model of MoS2 catalyst: S2 units in the MoSn-/0 (n = 1~5) clusters. J. Phys. Chem. A 2013, 117, 5632-5641.

    16. [16]

      (b) Wang, B.; Chen, W. J.; Zhao, B. C.; Zhang, Y. F.; Huang, X. Tetratungsten oxide clusters W4On-/0 (n = 10~13): structural evolution and chemical bonding. J. Phys. Chem. A 2010, 114, 1964-1972.

    17. [17]

      (c) Zhai, H. J.; Wang, B.; Huang, X.; Wang, L. S. Probing the electronic and structural properties of the niobium trimer cluster and its mono- and dioxides: Nb3On- and Nb3On (n = 0~2). J. Phys. Chem. A 2009, 113, 3866-3875.

    18. [18]

      (d) Zhai, H. J.; Wang, B.; Huang, X.; Wang, L. S. Structural evolution, sequential oxidation, and chemical bonding in tritantalum oxide clusters: Ta3On- and Ta3On (n = 1~8). J. Phys. Chem. A 2009, 113, 9804-9813.

    19. [19]

      (e) Wang, B.; Zhai, H. J.; Huang, X.; Wang L. S. On the electronic structure and chemical bonding in the tantalum trimer cluster. J. Phys. Chem. A 2008, 112, 10962-10967.

    20. [20]

      (16) (a) Liang, B.; Wang, X.; Andrews, L. Infrared spectra and density functional theory calculations of group 8 transition metal sulfide molecules. J. Phys. Chem. A 2009, 113, 5375-5384.

    21. [21]

      (b) Liang, B.; Wang, X.; Andrews, L. Infrared spectra and density functional theory calculations of group 10 transition metal sulfide molecules and complexes. J. Phys. Chem. A 2009, 113, 3336-3343.

    22. [22]

      (c) Wang, X.; Liang, B.; Andrews, L. Infrared spectra and density functional theory calculations of coinage metal disulfide molecules and complexes. Dalton Trans. 2009, 21, 4190-4198.

    23. [23]

      (d) Gemming, S.; Tamuliene, J.; Seifert, G.; Bertram, N.; Kim, Y. D.; Ganteför, G. Electronic and geometric structures of MoxSy and WxSy (x = 1, 2, 4; y = 1~12) clusters. Appl. Phys. A 2006, 82, 161-166.

    24. [24]

      (e) Gemming, S.; Seifert, G.; Bertram, N.; Fischer, T.; Götz, M.; Ganteför, G. One-dimensional (Mo3S3)n clusters: building blocks of clusters materials and ideal nanowires for molecular electronics. Chem. Phys. Lett. 2009, 474, 127-131.

    25. [25]

      (f) Zhao, Y. C.; Yuan, J.; Zhang, Z. G.; Xu, H. G.; Zheng, W. Structures of manganese polysulfides: mass-selected photodissociation and density functional calculations. Dalton Trans. 2011, 40, 2502-2508.

    26. [26]

      (g) He, S. G.; Xie, Y.; Guo, Y.; Bernstein, E. Formation, detection, and stability studies of neutral vanadium sulfide clusters. J. Chem. Phys. 2007, 126, 194315.

    27. [27]

      (h) Tran, V. T.; Tran, Q. T.; Hendrickx, M. F. A. Geometric and electronic structures for MnS2-/0 clusters by interpreting the anion photoelectron spectrum with ouantum chemical calculations. J. Phys. Chem. A 2015, 119, 5626-5633.

    28. [28]

      (17) (a) Johnson, G. E.; Tyo, E. C.; Castleman, A. W. Jr. Cluster reactivity experiments: employing mass spectrometry to investigate the molecular level details of catalytic oxidation reactions. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18108-18113.

    29. [29]

      (b) Waters, T.; Huang, X.; Wang, X. B.; Woo, H. K.; O’Hair, R. A. J.; Wedd, A. G.; Wang, L. S. Photoelectron spectroscopy of free multiply charged Keggin anions α-[P12O40]3- (M = Mo, W) in the gas phase. J. Phys. Chem. A 2006, 110, 10737-10741.

    30. [30]

      (c) Böhme, D. K.; Schwarz, H. Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew. Chem., Int. Ed. 2005, 44, 2336-2354.

    31. [31]

      (d) Castleman, A. W., Jr. Cluster structure and reactions: gaining insights into catalytic processes. Catal. Lett. 2011, 141, 1243-1253.

    32. [32]

      (18) Liang, B.; Andrews, L. Infrared spectra and density functional theory calculations of Group V transition metal sulfides. J. Phys. Chem. A 2002, 106, 3738-3743.

    33. [33]

      (19) (a) Yu, S. W.; Li, T. H.; Yao, L. F.; Yang, X. M.; Xie, X. G. Theoretical study on the reaction of NbS+ ( 3-, 1Γ) with COS in gas phase. J. Mol. Struc.

    34. [34]

      (Theochem.) 2009, 901, 249-257.

    35. [35]

      (b) Yu, S. W.; Li, T. H.; Yang, X. M.; Yin, L. Q.; Yao, L. F.; Xie, X. G. Theoretical study on the reaction of NbS+ ( 3-, 1Γ) with CO. Chin. Chem. Lett. 2009, 20, 755-758.

    36. [36]

      (20) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B. Gas-phase thermochemistry of the early cationic transition-metal sulfides of the second row: YS+, ZrS+, and NbS+. Int. J. Mass Spectrom. 2006, 249, 263-278.

    37. [37]

      (21) Sun, X.; Wang, J.; Wu, Z. Chemica bonding and electronic structure of 4d-metal monosulfides. J. Clust. Sci. 2009, 20, 525-534.

    38. [38]

      (22) Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372-1377.

    39. [39]

      (23) Lee, C.; Yang, W.; Parr, R. G. Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.

    40. [40]

      (24) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623-11627.

    41. [41]

      (25) (a) Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829-5835.

    42. [42]

      (b) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.

    43. [43]

      (c) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials. Theor. Chem. Acc. 1997, 97, 119-124. The exponents (included those of the polarization functions) and contraction coefficients can be retrieved from the following web-site: https://bse.pnl.gov/bse/portal.

    44. [44]

      (26) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123-141. ECP parameters for Nb were obtained from the following web-site: https://bse.pnl.gov/bse/portal.

    45. [45]

      (27) Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Pseudopotentials of the Stuttgart/Dresden Group 1998, revision August 11, 1998; http://www.theochem.uni-stuttgart.de/pseudopotentiale.

    46. [46]

      (28) Martin, J. M. L.; Sundermann, A. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: the atoms Ga-Kr and In-Xe. J. Chem. Phys. 2001, 114, 3408-3420.

    47. [47]

      (29) (a) Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.

    48. [48]

      (b) Woon, D. E.; Dunning, T. H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358-1371.

    49. [49]

      (c) Dunning, T. H.; Peterson, K. A.; Wilson, A. K. Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J. Chem. Phys. 2001, 114, 9244-9253.

    50. [50]

      (30) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 1988, 38, 3098-3100.

    51. [51]

      (31) Perdew, J. P. Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys. Rev. B 1986, 33, 8822-8824.

    52. [52]

      (32) Purvis, G. D. III; Bartlett, R. J. A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910-1918.

    53. [53]

      (33) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. III. An efficient reformulation of the closed shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys.1988, 89, 7382-7387.

    54. [54]

      (34) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479-483.

    55. [55]

      (35) Watts, J. D.; Gauss, J.; Bartlett, R. J. Coupled-cluster methods with non-iterative triple excitations for restricted open-shell Hartree-fock and other general single-determinant reference functions. Energies and analytical gradients. J. Chem. Phys. 1993, 98, 8718-8733.

    56. [56]

      (36) Bartlett, R. J.; Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291-352.

    57. [57]

      (37) Tozer, D. J.; Handy, N. C. Improving virtual Kohn-Sham orbitals and eigenvalues: application to excitation energies and static polarisabilities. J. Chem. Phys. 1998, 109, 10180-10189.

    58. [58]

      (38) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C. Pople, J. A. Gaussian 03; Revision D. 01; Gaussian, Inc.: Wallingford, CT 2004.

    59. [59]

      (39) Werner, H. J.; Knowles, P. J.; Manby, F. R.; Schütz, M.; Celani, P.; Knizia, G.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklass, A.; O’Neill, D. P.; Palmieri, P.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.; Wolf, A. MOLPRO, version 2010.1, a package of ab initio programs; see http://www.molpro.net.

    60. [60]

      (40) Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 1996, 14, 33-38.

    61. [61]

      (41) (a) Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F. III.; Nandi, S.; Ellison, G. B. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem. Rev. 2002, 102, 231-282.

    62. [62]

      (b) Wang, H. Q.; Li, H. F.; Kuang, X. Y. Probing the structural and electronic properties of small vanadium monoxide clusters. Phys. Chem. Chem. Phys. 2012, 14, 5272-5283.

    63. [63]

      (42) Wu, N.; Zhang, C. F.; Zhou, Q.; Huang, X.; Zhang, Y. F.; Ding, K. N.; Wang, B. DFT study on the electronic and structural properties of MoS6-/0 clusters. Chin. J. Struct. Chem. 2013, 32, 1046-1054.

    64. [64]

      (43) (a) Bullett, D. W. Electronic structure and properties of NbS3 and Nb3S4. J. Solid State Chem. 1980, 33, 13-16.

    65. [65]

      (b) Zhdanov, K. R.; Mishenko, A. V.; Rakhmenkulov, F. S.; Fedorov, V. E. Structural anisotropy and heat capacity of NbS3. Phys. Stat. Sol.

    66. [66]

      (A) 1984, 83, 147-152.

    67. [67]

      (c) Artemkina, S. B.; Podlipskaya, T. Y.; Bulavchenko, A. I.; Komonov, A. I.; Mironov, Y. V.; Fedorov, V. E. Preparation and characterization of colloidal dispersions of layered niobium chalcogenides. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 461, 30-39.

  • 加载中
    1. [1]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    2. [2]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    5. [5]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    6. [6]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    7. [7]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    8. [8]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    9. [9]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    10. [10]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    11. [11]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    12. [12]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    13. [13]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    14. [14]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    15. [15]

      Xianghe KongXiaoli LiaoZhenkun HuangLei MeiHongqing WangKongqiu HuWeiqun Shi . Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, 35(11): 109642-. doi: 10.1016/j.cclet.2024.109642

    16. [16]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    17. [17]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    18. [18]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    19. [19]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    20. [20]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

Metrics
  • PDF Downloads(1)
  • Abstract views(2039)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return