Citation: CHEN Peng-Yuan, ZHANG Lin, ZHU Shun-Guan, CHENG Guang-Bin. Intermolecular Interactions, Thermodynamic Properties, Detonation Performance, and Sensitivity of TNT/CL-20 Cocrystal Explosive[J]. Chinese Journal of Structural Chemistry, ;2016, 35(2): 246-256. doi: 10.14102/j.cnki.0254-5861.2011-0887 shu

Intermolecular Interactions, Thermodynamic Properties, Detonation Performance, and Sensitivity of TNT/CL-20 Cocrystal Explosive

  • Corresponding author: ZHANG Lin, 
  • Received Date: 10 July 2015
    Available Online: 9 October 2015

  • Intermolecular interactions and properties of TNT (2,4,6-trinitrotoluene)/CL-20 (2,4,6,8,10,12-hexanitrohexaazaisowurtzitane) cocrystal were studied by density functional theory (DFT) methods. Binding energy, natural bond orbital (NBO), and atom in molecules (AIM) analysis were performed to investigate the intermolecular interactions in the cocrystal. Results show that the unconventional CH…O type hydrogen bond plays a key role in forming the cocrystal. The variation tendency of entropy and enthalpy shows that the formation of the cocrystal is an exothermic process and low temperature will be benefit for the assembling of complexes. The calculated detonation velocity of the cocrystal agrees well with the experimental value which is higher than that of the physical mixture of TNT and CL-20. In addition, bond dissociation energies (BDEs) of the weakest trigger bond in TNT/CL-20 complex were calculated and the results show that the TNT/CL-20 complex is thermally stable. Finally, first-principles calculations were performed and analysis of the nitro group Mulliken charge indicates that the cocrystal is less sensitive than pure CL-20.
  • 加载中
    1. [1]

      (1) Steed, J. W. The role of co-crystals in pharmaceutical design. Trends. Pharmacol. Sci. 2013, 34, 185-193.

    2. [2]

      (2) Guo, C. Y.; Zhang, H. B.; Wang, X. C.; Xu, J. J.; Liu, Y.; Liu, X. F.; Huang, H.; Sun, J. Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J. Mol. Struct. 2013, 1048, 267-273.

    3. [3]

      (3) Yang, Z. W.; Li, H. Z.; Zhou, X. Q.; Zhang, C. Y.; Huang, H.; Li, J. S.; Nie, F. D. Characterization and properties of a novel energetic-energetic cocrystal explosive composed of HNIW and BTF. Cryst. Growth Des. 2012, 12, 5155-5158.

    4. [4]

      (4) Yang, Z. W.; Li, H. Z.; Zhou, X. Q.; Zhang, C. Y.; Huang, H.; Li, J. S.; Nie, F. D. Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions. Cryst. Growth Des. 2013, 13, 679-687.

    5. [5]

      (5) Landenberger, K. B.; Matzger, A. J. Cocrystal engineering of a prototype energetic material: supramolecular chemistry of 2,4,6-trinitrotoluene. Cryst. Growth Des. 2012, 10, 5341-5347.

    6. [6]

      (6) Bolton, O.; Simke, L. R.; Matzger, A. J. High power explosive with good sensitivity: a 2:1 cocrystal of CL-20: HMX. Cryst. Growth Des. 2012, 12, 4311-4314.

    7. [7]

      (7) Bolton, O.; Matzger, A. J. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew. Chem. Int. Ed. 2011, 50, 8960-8963.

    8. [8]

      (8) Landenberger, K. B.; Bolton, O.; Matzger, A. J. Two isostructural explosive cocrystals with significantly different thermodynamic stabilities. Angew. Chem. Int. Ed. 2013, 52, 6468-6471.

    9. [9]

      (9) Millar, D. I. A.; Maynard-Casely, H. E.; Allan, D. R.; Cumming, A. S.; Lennie, A. R.; Mackay, A. J.; Oswald, I. D. H.; Tang, C. C.; Pulham, C. R. Crystal engineering of energetic materials: co-crystals of CL-20. Cryst. Eng. Comm. 2012, 14, 3742-3749.

    10. [10]

      (10) Yang, H. W.; Wang, Y. P.; Zhou, J. H.; Li, H. Z.; Huang, H.; Nie, F. D. Preparation and performance of a BTF/DNB cocrystal explosive. Propellants Explos. Pyrotech. 2014, 39, 9-13.

    11. [11]

      (11) Yang, Z. W.; Li, H. Z.; Huang, H.; Zhou, X. Q.; Li, J. S.; Nie, F. D. Preparation and performance of a HNIW/TNT cocrystal explosive. Propellants Explos. Pyrotech. 2013, 38, 495-501.

    12. [12]

      (12) Ma, P.; Zhang, L.; Zhu, S. G.; Chen, H. H. Synthesis, crystal structure and DFT calculation of an energetic perchlorate amine salt. J. Cryst. Growth. 2011, 335, 70-74.

    13. [13]

      (13) Lin, H.; Zhu, S. G.; Zhang, L.; Peng, X. H.; Chen, P. Y.; Li, H. Z. Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of HMX/NTO cocrystal explosive. Int. J. Quantum. Chem. 2013, 113, 1591-1599.

    14. [14]

      (14) Lin, H.; Zhu, S. G.; Li, H. Z.; Peng, X. H. Structure and detonation performance of a novel HMX/LLM-105 cocrystal explosive. J. Phys. Org. Chem. 2013, 26, 898-907.

    15. [15]

      (15) Zhang, C. Y.; Cao, Y. F.; Li, H. Z.; Zhou, Y.; Zhou, J. H.; Gao, T.; Zhang, H. B.; Yang, Z. W.; Jiang, G. Toward low-sensitive and high-energetic cocrystal I: evaluation of the power and the safety of observed energetic cocrystals. Cryst. Eng. Comm. 2013, 15, 4003-4014.

    16. [16]

      (16) Li, H. R.; Shu, Y. J.; Gao, S. J.; Chen, L.; Ma, Q.; Ju, X. H. Easy methods to study the smart energetic TNT/CL-20 cocrystal. J. Mol. Model. 2013, 19, 4909-4917.

    17. [17]

      (17) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account. 2008, 120, 215-241.

    18. [18]

      (18) Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies-Some procedures with reduced errors. Mol. Phys. 1970, 19, 553-566.

    19. [19]

      (19) Biegler-Konig, F.; Schonbohm, J.; Bayles, D. Software news and updates-AIM2000-A program to analyze and visualize atoms in molecules. J. Comput. Chem. 2001, 22, 545-559.

    20. [20]

      (20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T. Jr.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C. S.; Iyengar, S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010, Gaussian 09, Revision B.01.

    21. [21]

      (21) Wang, F.; Wang, G. X.; Du, H. C.; Zhang, J. Y.; Gong, X. D. Theoretical studies on the heats of formation, detonation properties, and pyrolysis mechanisms of energetic cyclic nitramines. J. Phys. Chem. A 2011, 115, 13858-13864.

    22. [22]

      (22) Li, M. M.; Wang, G. X.; Guo, X. D.; Wu, Z. W.; Song, H. C. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of four trinitrate esters. J. Mol. Struct.: Theochem. 2009, 900, 90-95.

    23. [23]

      (23) Pan, Y.; Zhu, W. H.; Xiao, H. M. Comparative theoretical studies of dinitromethyl- or trinitromethyl-modified derivatives of CL-20. Can. J. Chem. 2013, 91, 1243-1251.

    24. [24]

      (24) Lin, H.; Chen, P. Y.; Zhu, S. G.; Zhang, L.; Peng, X. H.; Li, K.; Li, H. Z. Theoretical design of pyrazine-based high energy materials. Comput. Thero. Chem. 2013, 1013, 25-31.

    25. [25]

      (25) Kuklja, M. M. Thermal decomposition of solid cyclotrimethylene trinitramine. J. Phys. Chem. B 2001, 105, 10159-10162.

    26. [26]

      (26) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567-570.

    27. [27]

      (27) Perdew, J. P.; Burke, K.; Ernzerhof, M. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048-5079.

    28. [28]

      (28) Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892-7895.

    29. [29]

      (29) Fletcher, R. Practical methods of optimization, Vol 1. Wiley, New York 1980.

    30. [30]

      (30) Zhang, S. W.; Guzei, I. A.; de Villiers, M. M.; Yu, L.; Krzyzaniak, J. F. Formation enthalpies and polymorphs of nicotinamide-R-mandelic acid co-crystals. Cryst.Growth Des. 2012, 12, 4090-4097.

    31. [31]

      (31) Zhang, S. W.; Harasimowicz, M. T.; de Villiers, M. M.; Yu, L. Cocrystals of nicotinamide and (R)-mandelic acid in many ratios with anomalous formation properties. J. Am. Chem. Soc. 2013, 135, 18981-18989.

    32. [32]

      (32) Ju, X. H.; Xiao, H. M.; Xia, Q. Y. A density functional theory investigation of 1,1-diamino-2,2-dinitroethylene dimers and crystal. J. Chem. Phys. 2003, 119, 10247-10255.

    33. [33]

      (33) Sanchez-Coronilla, A.; Sanchez-Marquez, J.; Zorrilla, D.; Martin, E. I.; de los Santos, D. M.; Navas, J.; Fernandez-Lorenzo, C.; Alcantara, R.; Martin-Calleja, J. Convergent study of Ru-ligand interactions through QTAIM, ELF, NBO molecular descriptors and TDDFT analysis of organometallic dyes. Mol. Phys. 2014, 112, 2063-2077.

    34. [34]

      (34) Bader, R. F. W. Atoms in Molecules: A Quantum Theory. Oxford University Press, New York 1990.

    35. [35]

      (35) Dai, Y. F.; Qu, Y. X.; Wang, S.; Wang, J. D. Theoretical study on the interactions between ionic liquid and solute molecules for typical separation problems. Chem. Phys. Lett. 2014, 608, 366-372.

    36. [36]

      (36) Rozas, I.; Alkorta, I.; Elguero, J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc. 2000, 122, 11154-11161.

    37. [37]

      (37) Zhao, G. Z.; Lu, M. Theoretical investigations of pyridine derivatives as potential high energy density materials. J. Phys. Org. Chem. 2013, 26, 211-217.

    38. [38]

      (38) Wang, G. X.; Gong, X. D.; Liu, Y.; Xiao, H. M. A theoretical investigation on the structures, densities, detonation properties, and pyrolysis mechanism of the nitro derivatives of phenols. Int. J. Quantum. Chem. 2012, 110, 1691-1701.

    39. [39]

      (39) Wu, Q.; Pan, Y.; Zhu, W. H.; Xiao, H. M. Computational study of energetic nitrogen-rich derivatives of 1,4-bis(1-azo-2,4-dinitrobenzene)-iminotetrazole. J. Mol. Model. 2013, 19, 1853-1864.

    40. [40]

      (40) Zhang, C. Y. Review of the establishment of nitro group charge method and its applications. J. Hazard. Mater. 2009, 161, 21-28.

    41. [41]

      (41) Zhang, C. Y.; Shu, Y. J.; Wang, X. F.; Zhao, X. D.; Tan, B. S.; Peng, R. F. A new method to evaluate the stability of the covalent compound: by the charges on the common atom or group. J. Phys. Chem. A 2005, 109, 6592-6596.

    42. [42]

      (42) Zhu, W. H.; Zhang, X. W.; Wei, T.; Xiao, H. M. First-principles study of crystalline mono-amino-2,4,6-trinitrobenzene, 1,3-diamino-2,4,6-trinitrobenzene, and 1,3,5-triamino-2,4,6-trinitrobenzene. J. Mol. Struct.: Theochem. 2009, 900, 84-89.

    43. [43]

      (43) Zhu, W. H.; Shi, C. H.; Xiao, H. M. Density functional theory study of high-pressure behavior of crystalline hexanitrostilbene. J. Mol. Struct.: Theochem. 2009, 910, 48-153.

    44. [44]

      (44) Zhu, W. H.; Xiao, H. M. First-principles study of electronic, absorption, and thermodynamic properties of crystalline styphnic acid and its metal salts. J. Phys. Chem. B. 2009, 113, 10315-10321.

    45. [45]

      (45) Liu, Y.; Du, H. C.; Wang, G. X.; Gong, X. D. Comparative theoretical studies of high pressure effect on polymorph I of 2,2',4,4',6,6'-hexanitroazobenzene crystal. Struct. Chem. 2012, 23, 1631-1642.

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    4. [4]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    7. [7]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    8. [8]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    9. [9]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    10. [10]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    11. [11]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    12. [12]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    13. [13]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    14. [14]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    15. [15]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    16. [16]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    17. [17]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    18. [18]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    19. [19]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    20. [20]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

Metrics
  • PDF Downloads(0)
  • Abstract views(797)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return