Citation: GUO Wang, SHI Hong-Ling, HUANG Ji-Quan, DENG Zhong-Hua, YUAN Xuan-Yi, CAO Yong-Ge. Spectral Property and Thermal Quenching Behavior of Tb3+-Doped YAG: Ce Phosphor[J]. Chinese Journal of Structural Chemistry, ;2016, 35(2): 326-334. doi: 10.14102/j.cnki.0254-5861.2011-0871
-
A series of YAG:Ce, Tb phosphors were synthesized by vacuum sintering method. Moreover, their spectral properties, thermal quenching behaviors and color rendering properties were investigated systematically. The photoluminescence emission spectra of YAG:Ce, Tb show a great red shift compared with that of YAG:Ce. Direct energy transfer from Tb3+ to Ce3+ ions is verified based on the analysis of different photoluminescence spectra. The quenching temperature for Tb3+-doped YAG:Ce phosphors is about 490 K. The thermal activation energy is estimated to be 0.18 and 0.291 eV for Tb3+-doped YAG:Ce and YAG:Ce phosphors, respectively. The smaller activation energy for Tb3+-doped YAG:Ce means a more rapid nonradiative transition from 5d to 4f state, thus resulting in the lower quenching temperature. In addition, white LEDs with improved color rendering properties are achieved by using modified YAG:Ce, Tb phosphors.
-
Keywords:
- YAG:Ce,
- Tb phosphors,
- spectra properties,
- thermal quenching,
- white LEDs
-
-
[1]
(1) Blasse, G.; Grabmaier, B. C. Luminescent Materials. Springer, Berlin 1994.
-
[2]
(2) Gan, L.; Mao, Z. Y.; Xu, F. F.; Zhu, Y. C.; Liu, X. J. Molten salt synthesis of YAG:Ce3+ phosphors from oxide raw materials. Ceram. Int. 2014, 40, 5067-5071.
-
[3]
(3) Nakamua, S.; Fasol, G. The blue Laser Diode. Springer, Berlin 1996.
-
[4]
(4) Schubert, E. F.; Kim, J. K. Solid-state light sources getting smart. Science 2005, 308, 1274-1278.
-
[5]
(5) You, F. T.; Bos, A. J. J.; Shi, Q. F.; Huang, S. H.; Dorenbos, P. Phys. Rev. B. Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12. 2012, 85, 115101-1-6.
-
[6]
(6) Pan, Y. X.; Wu, M. M.; Su, Q. Tailored photoluminescence of YAG:Ce phosphor through various methods. J. Phys. Chem. Solids 2004, 65, 845-850.
-
[7]
(7) Jang, H. S.; Im, W. B.; Lee, D. C.; Jeon, D. Y.; Kim, S. S. Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs. J. Lumin. 2007, 126, 371-377.
-
[8]
(8) Mukherjee, S.; Sudarsan, V.; Vatsa, R. K.; Tyagi, A. K. Luminescence studies on lanthanide ions (Eu3+, Dy3+ and Tb3+) doped YAG:Ce nano-phosphors. J. Lumin. 2009, 129, 69-72.
-
[9]
(9) Jung, K. Y.; Lee, H. W. Enhanced luminescent properties of Y3Al5O12:Tb3+,Ce3+ phosphor prepared by spray pyrolysis. J. Lumin. 2007, 126, 469-474.
-
[10]
(10) Blasse, G.; Bril, A. Investigation of some Ce3+-activated phosphors. J. Chem. Phys. 1967, 47, 5139-5145.
-
[11]
(11) Jacobs, R. R.; Krupke, W. F.; Weber, M. J. Measurement of excited-state-absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d → 4f rare-earth lasers. Appl. Phys. Lett. 1978, 33, 410-412.
-
[12]
(12) Rack, P. D.; Holloway, P. H. The structure, device physics, and material properties of thin film electroluminescent displays. Mater. Sci. Eng. R 1998, 171-219.
-
[13]
(13) Rodręguez-Rojas, R. A.; De la Rosa Cruz, E.; Dıaz-Torres, L. A.; Salas, P.; Melendrez, R.; barboza-Flores, M.; Meneses Nava, M. A.; Barbosa-Garcıa, O. Preparation, photo- and thermo-luminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to UV-irradiation. Opt. Mater. 2004, 25, 285-293.
-
[14]
(14) Zhou, Y. H.; Lin, J.; Yu, M.; Wang, S. B.; Zhang, H. J. Synthesis-dependent luminescence properties of Y3Al5O12:Re3+ (Re = Ce, Sm, Tb) phosphors. Mater. Lett. 2002, 56, 628-636.
-
[15]
(15) Lin, Y. S.; Liu, R. S.; Cheng, B. M. Investigation of the luminescent properties of Tb3 + -substituted YAG:Ce, Gd phosphors general topics. J. Electrochem. Soc. 2005, 152, 41-45.
-
[16]
(16) Yang, H. S.; Kim, Y. S. Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors. J. Lumin. 2008, 128, 1570-1576.
-
[17]
(17) Shmulovich, J.; Berkstresser, G. W.; Brasen, D. Tb3+ → Ce3+ energy transfer in Tb3+:Ce3+:YAG single crystalsa. J. Chem. Phys. 1985, 82, 3078-3082.
-
[18]
(18) Liu, X. R.; Wang, X. J.; Wang, Z. K. Selectively excited emission and Tb3+ → Ce3+ energy transfer in yttrium aluminum garnet. Phys. Rev. B 1989, 39, 10633-10639.
-
[19]
(19) Wong, C. M.; Rotman, S. R.; Warde, C. Optical studies of cerium doped yttrium aluminum garnet single crystals. Appl. Phys. Lett. 1984, 44, 1038-1040.
-
[20]
(20) Kelledouk, F.; Belt, T.; van den. Blasse, G. On the luminescence of bismuth, cerium, and chromium and yttrium aluminium borate. J. Chem. Phys. 1982, 76, 1194-1201.
-
[21]
(21) Jia, D.; Meltzer, R. S.; Yen, W. M.; Jia, W.; Wang, X. Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer. Appl. Phys. Lett. 2002, 90, 1535-1537.
-
[22]
(22) You, H.; Hong, G.; Wu, X. A new type of highly efficient luminescent materials the system Al2O3-B2O3 containing Ce3+ and Tb3+ ions. Chem. Mater. 2003, 15, 2000-2004.
-
[23]
(23) Riwotzki, K.; Meyssamy, H.; Schnablegger, H.; Kornowski, A.; Haase, M. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce,Tb nanocrystals. Angew. Chem. Int. Ed. 2001, 40, 573-576.
-
[24]
(24) Zhu, X. J.; Zhou, K. N.; Li, Y. M.; Wang, Z. L.; Feng, Q. C. Luminescent properties and energy transfer of Y3Al5O12:Ce3+, Ln3+ (Ln = Tb, Pr) prepared by polymer-assisted sol-gel method. J. Lumin. 2012, 132, 3004-3009.
-
[25]
(25) Bachmann, V.; Ronda, C.; Meijerink, A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce. Chem. Mater. 2009, 21, 2077-2084.
-
[26]
(26) Bhushan, S.; Chukichev, M. V. Temperature dependent studies of cathodoluminescence of green band of ZnO crystals. J. Mater. Sci. Lett. 1988, 7, 319-321.
-
[27]
(27) Chen, Y.; Liu, B.; Shi, C.; Ren, G.; Zimmerer, G. The temperature effect of Lu2SiO5:Ce3+ luminescence. Nucl. Instrum. Meth. Phys. Res. A 2005, 537, 31-35.
-
[28]
(28) Chiang, C. C.; Tsai, M. S.; Hon, M. H. Luminescent properties of cerium-activated garnet series phosphor: structure and temperature effects. J. Electrochem. Soc. 2008, 155, B517-B520.
-
[29]
(29) Ueda, J.; Tanabe, S.; Nakanishi, T. Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement. J. Appl. Phys. 2011, 110, 053102-1-6.
-
[30]
(30) Raukas, M.; Basun, S. A.; Schaik, W. V.; Yen, W.; Happek, M. U. Luminescence efficiency of cerium doped insulators: The role of electron transfer processes. Appl. Phys. Lett. 1996, 69, 3300-3302.
-
[31]
(31) Hamilton, D. S.; Gayen, S. K.; Pogatshnik, G. J.; Ghen, R. D.; Miniscalco, W. J. Optical-absorption and photoionization measurements from the excited states of Ce3+:Y3Al5O12. Phys. Rev. B 1989, 39, 8807-8815.
-
[32]
(32) Ivanovskikh, K. V.; Ogieglo, J. M.; Zych, A.; Ronda, C. R.; Meijerink, A. J. Solid. State. Sci. Technol. 2013, 2, R3148-R3152.
-
[33]
(33) Fang, Y. C.; Chu, S. Y.; Kao, P. C.; Chuang, Y. M.; Zeng, Z. L. Energy transfer and thermal quenching behaviors of CaLa2 (MoO4)4: Sm3 + , Eu3 + red phosphors. J. Electrochem. Soc. 2011, 158, J1-J5.
-
[34]
(34) Han, T.; Cao, S.; Peng, L.; Zhu, D.; Zhao, C.; Tu, M.; Zhang, J. Chemical substitution effects of elements on photoluminescence properties of YAG:Ce phosphors using orthogonal experimental design. Opt. Mater. 2012, 34, 1618-1621.
-
[35]
(35) Yadav, P. J.; Joshi, C. P.; Moharil, S. V. Two phosphor converted white LED with improved CRI. J. Lumin. 2013, 136, 1-4.
-
[36]
(36) Chung, W.; Yu, H. J.; Park, S. H.; Chun, B. H.; Kim, S. H. YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index. Mater. Chem. Phys. 2011, 126, 162-166.
-
[1]
-
-
[1]
Pingping Wang , Huixian Miao , Kechuan Sheng , Bin Wang , Fan Feng , Xuankun Cai , Wei Huang , Dayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600
-
[2]
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
-
[3]
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
-
[4]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
-
[5]
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
-
[6]
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
-
[7]
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
-
[8]
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
-
[9]
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
-
[10]
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369
-
[11]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[12]
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
-
[13]
Rongliang Deng , Yihang Chen , Xiaotong Fan , Guolong Chen , Shuli Wang , Changzhi Yu , Xiao Yang , Tingzhu Wu , Zhong Chen , Yue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346
-
[14]
Xiangan Song , Shaogang Shen , Mengyao Lu , Ying Wang , Yong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118
-
[15]
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
-
[16]
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
-
[17]
Hui Liu , Xiangyang Tang , Zhuang Cheng , Yin Hu , Yan Yan , Yangze Xu , Zihan Su , Futong Liu , Ping Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809
-
[18]
Hong Chen , Mao-Yin Ran , Long-Hua Li , Xin-Tao Wu , Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397
-
[19]
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
-
[20]
Yanbing Shen , Yuan Yuan , Yaxin Wang , Xiaonan Ma , Wensheng Yang , Yulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(714)
- HTML views(1)