Citation:
GUO Wang, SHI Hong-Ling, HUANG Ji-Quan, DENG Zhong-Hua, YUAN Xuan-Yi, CAO Yong-Ge. Spectral Property and Thermal Quenching Behavior of Tb3+-Doped YAG: Ce Phosphor[J]. Chinese Journal of Structural Chemistry,
;2016, 35(2): 326-334.
doi:
10.14102/j.cnki.0254-5861.2011-0871
-
A series of YAG:Ce, Tb phosphors were synthesized by vacuum sintering method. Moreover, their spectral properties, thermal quenching behaviors and color rendering properties were investigated systematically. The photoluminescence emission spectra of YAG:Ce, Tb show a great red shift compared with that of YAG:Ce. Direct energy transfer from Tb3+ to Ce3+ ions is verified based on the analysis of different photoluminescence spectra. The quenching temperature for Tb3+-doped YAG:Ce phosphors is about 490 K. The thermal activation energy is estimated to be 0.18 and 0.291 eV for Tb3+-doped YAG:Ce and YAG:Ce phosphors, respectively. The smaller activation energy for Tb3+-doped YAG:Ce means a more rapid nonradiative transition from 5d to 4f state, thus resulting in the lower quenching temperature. In addition, white LEDs with improved color rendering properties are achieved by using modified YAG:Ce, Tb phosphors.
-
Keywords:
- YAG:Ce,
- Tb phosphors,
- spectra properties,
- thermal quenching,
- white LEDs
-
-
-
[1]
(1) Blasse, G.; Grabmaier, B. C. Luminescent Materials. Springer, Berlin 1994.
-
[2]
(2) Gan, L.; Mao, Z. Y.; Xu, F. F.; Zhu, Y. C.; Liu, X. J. Molten salt synthesis of YAG:Ce3+ phosphors from oxide raw materials. Ceram. Int. 2014, 40, 5067-5071.
-
[3]
(3) Nakamua, S.; Fasol, G. The blue Laser Diode. Springer, Berlin 1996.
-
[4]
(4) Schubert, E. F.; Kim, J. K. Solid-state light sources getting smart. Science 2005, 308, 1274-1278.
-
[5]
(5) You, F. T.; Bos, A. J. J.; Shi, Q. F.; Huang, S. H.; Dorenbos, P. Phys. Rev. B. Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12. 2012, 85, 115101-1-6.
-
[6]
(6) Pan, Y. X.; Wu, M. M.; Su, Q. Tailored photoluminescence of YAG:Ce phosphor through various methods. J. Phys. Chem. Solids 2004, 65, 845-850.
-
[7]
(7) Jang, H. S.; Im, W. B.; Lee, D. C.; Jeon, D. Y.; Kim, S. S. Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs. J. Lumin. 2007, 126, 371-377.
-
[8]
(8) Mukherjee, S.; Sudarsan, V.; Vatsa, R. K.; Tyagi, A. K. Luminescence studies on lanthanide ions (Eu3+, Dy3+ and Tb3+) doped YAG:Ce nano-phosphors. J. Lumin. 2009, 129, 69-72.
-
[9]
(9) Jung, K. Y.; Lee, H. W. Enhanced luminescent properties of Y3Al5O12:Tb3+,Ce3+ phosphor prepared by spray pyrolysis. J. Lumin. 2007, 126, 469-474.
-
[10]
(10) Blasse, G.; Bril, A. Investigation of some Ce3+-activated phosphors. J. Chem. Phys. 1967, 47, 5139-5145.
-
[11]
(11) Jacobs, R. R.; Krupke, W. F.; Weber, M. J. Measurement of excited-state-absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d → 4f rare-earth lasers. Appl. Phys. Lett. 1978, 33, 410-412.
-
[12]
(12) Rack, P. D.; Holloway, P. H. The structure, device physics, and material properties of thin film electroluminescent displays. Mater. Sci. Eng. R 1998, 171-219.
-
[13]
(13) Rodręguez-Rojas, R. A.; De la Rosa Cruz, E.; Dıaz-Torres, L. A.; Salas, P.; Melendrez, R.; barboza-Flores, M.; Meneses Nava, M. A.; Barbosa-Garcıa, O. Preparation, photo- and thermo-luminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to UV-irradiation. Opt. Mater. 2004, 25, 285-293.
-
[14]
(14) Zhou, Y. H.; Lin, J.; Yu, M.; Wang, S. B.; Zhang, H. J. Synthesis-dependent luminescence properties of Y3Al5O12:Re3+ (Re = Ce, Sm, Tb) phosphors. Mater. Lett. 2002, 56, 628-636.
-
[15]
(15) Lin, Y. S.; Liu, R. S.; Cheng, B. M. Investigation of the luminescent properties of Tb3 + -substituted YAG:Ce, Gd phosphors general topics. J. Electrochem. Soc. 2005, 152, 41-45.
-
[16]
(16) Yang, H. S.; Kim, Y. S. Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors. J. Lumin. 2008, 128, 1570-1576.
-
[17]
(17) Shmulovich, J.; Berkstresser, G. W.; Brasen, D. Tb3+ → Ce3+ energy transfer in Tb3+:Ce3+:YAG single crystalsa. J. Chem. Phys. 1985, 82, 3078-3082.
-
[18]
(18) Liu, X. R.; Wang, X. J.; Wang, Z. K. Selectively excited emission and Tb3+ → Ce3+ energy transfer in yttrium aluminum garnet. Phys. Rev. B 1989, 39, 10633-10639.
-
[19]
(19) Wong, C. M.; Rotman, S. R.; Warde, C. Optical studies of cerium doped yttrium aluminum garnet single crystals. Appl. Phys. Lett. 1984, 44, 1038-1040.
-
[20]
(20) Kelledouk, F.; Belt, T.; van den. Blasse, G. On the luminescence of bismuth, cerium, and chromium and yttrium aluminium borate. J. Chem. Phys. 1982, 76, 1194-1201.
-
[21]
(21) Jia, D.; Meltzer, R. S.; Yen, W. M.; Jia, W.; Wang, X. Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer. Appl. Phys. Lett. 2002, 90, 1535-1537.
-
[22]
(22) You, H.; Hong, G.; Wu, X. A new type of highly efficient luminescent materials the system Al2O3-B2O3 containing Ce3+ and Tb3+ ions. Chem. Mater. 2003, 15, 2000-2004.
-
[23]
(23) Riwotzki, K.; Meyssamy, H.; Schnablegger, H.; Kornowski, A.; Haase, M. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce,Tb nanocrystals. Angew. Chem. Int. Ed. 2001, 40, 573-576.
-
[24]
(24) Zhu, X. J.; Zhou, K. N.; Li, Y. M.; Wang, Z. L.; Feng, Q. C. Luminescent properties and energy transfer of Y3Al5O12:Ce3+, Ln3+ (Ln = Tb, Pr) prepared by polymer-assisted sol-gel method. J. Lumin. 2012, 132, 3004-3009.
-
[25]
(25) Bachmann, V.; Ronda, C.; Meijerink, A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce. Chem. Mater. 2009, 21, 2077-2084.
-
[26]
(26) Bhushan, S.; Chukichev, M. V. Temperature dependent studies of cathodoluminescence of green band of ZnO crystals. J. Mater. Sci. Lett. 1988, 7, 319-321.
-
[27]
(27) Chen, Y.; Liu, B.; Shi, C.; Ren, G.; Zimmerer, G. The temperature effect of Lu2SiO5:Ce3+ luminescence. Nucl. Instrum. Meth. Phys. Res. A 2005, 537, 31-35.
-
[28]
(28) Chiang, C. C.; Tsai, M. S.; Hon, M. H. Luminescent properties of cerium-activated garnet series phosphor: structure and temperature effects. J. Electrochem. Soc. 2008, 155, B517-B520.
-
[29]
(29) Ueda, J.; Tanabe, S.; Nakanishi, T. Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement. J. Appl. Phys. 2011, 110, 053102-1-6.
-
[30]
(30) Raukas, M.; Basun, S. A.; Schaik, W. V.; Yen, W.; Happek, M. U. Luminescence efficiency of cerium doped insulators: The role of electron transfer processes. Appl. Phys. Lett. 1996, 69, 3300-3302.
-
[31]
(31) Hamilton, D. S.; Gayen, S. K.; Pogatshnik, G. J.; Ghen, R. D.; Miniscalco, W. J. Optical-absorption and photoionization measurements from the excited states of Ce3+:Y3Al5O12. Phys. Rev. B 1989, 39, 8807-8815.
-
[32]
(32) Ivanovskikh, K. V.; Ogieglo, J. M.; Zych, A.; Ronda, C. R.; Meijerink, A. J. Solid. State. Sci. Technol. 2013, 2, R3148-R3152.
-
[33]
(33) Fang, Y. C.; Chu, S. Y.; Kao, P. C.; Chuang, Y. M.; Zeng, Z. L. Energy transfer and thermal quenching behaviors of CaLa2 (MoO4)4: Sm3 + , Eu3 + red phosphors. J. Electrochem. Soc. 2011, 158, J1-J5.
-
[34]
(34) Han, T.; Cao, S.; Peng, L.; Zhu, D.; Zhao, C.; Tu, M.; Zhang, J. Chemical substitution effects of elements on photoluminescence properties of YAG:Ce phosphors using orthogonal experimental design. Opt. Mater. 2012, 34, 1618-1621.
-
[35]
(35) Yadav, P. J.; Joshi, C. P.; Moharil, S. V. Two phosphor converted white LED with improved CRI. J. Lumin. 2013, 136, 1-4.
-
[36]
(36) Chung, W.; Yu, H. J.; Park, S. H.; Chun, B. H.; Kim, S. H. YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index. Mater. Chem. Phys. 2011, 126, 162-166.
-
[1]
-
-
-
[1]
Pingping Wang , Huixian Miao , Kechuan Sheng , Bin Wang , Fan Feng , Xuankun Cai , Wei Huang , Dayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600
-
[2]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[3]
Feihu Wu , Gengwen Chen , Kaitao Lai , Shiqing Zhang , Yingchao Liu , Ruijian Luo , Xiaocong Wang , Pinzhi Cao , Yi Ye , Jiarong Lian , Junle Qu , Zhigang Yang , Xiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884
-
[4]
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
-
[5]
Ya-Ping Liu , Zhi-Rong Gui , Zhen-Wen Zhang , Sai-Kang Wang , Wei Lang , Yanzhu Liu , Qian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO−. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769
-
[6]
Chunhui Zhang , Jie Wang , Jieyang Zhan , Runmin Yang , Guanggang Gao , Jiayuan Zhang , Linlin Fan , Mengqi Wang , Hong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719
-
[7]
Hongzhi Zhang , Hong Li , Asif Ali Haider , Junpeng Li , Zhi Xie , Hongming Jiang , Conglin Liu , Rui Wang , Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509
-
[8]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
-
[9]
Junying LI , Xinyan CHEN , Xihui DIAO , Muhammad Yaseen , Chao CHEN , Hao WANG , Chuansong QI , Wei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084
-
[10]
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
-
[11]
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
-
[12]
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369
-
[13]
Keqiang Shi , Xiujuan Hong , Dongyan Xu , Tao Pan , Huiwen Wang , Hongru Feng , Cheng Guo , Yuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079
-
[14]
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
-
[15]
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
-
[16]
Huanyu Liu , Gang Yu , Ruoyao Guo , Hao Qi , Jiayin Zheng , Tong Jin , Zifeng Zhao , Zuqiang Bian , Zhiwei Liu . Direct identification of energy transfer mechanism in CeⅢ-MnⅡ system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296
-
[17]
Jinyuan Cui , Tingting Yang , Teng Xu , Jin Lin , Kunlong Liu , Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438
-
[18]
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
-
[19]
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
-
[20]
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(825)
- HTML views(4)